金属夹层板以优异的力学性能已应用于实船。本文根据与加筋板重量相当原则,设计一种金属折叠式夹层板结构,考虑其应用于舰船甲板的受力特性,采用非线性有限元方法,研究夹层板结构在不同组合载荷作用下的非线性后屈曲极限强度。首先通过与经验公式及相关结果对比验证了本文数值仿真方法和技术的可行性和准确性;然后建立双向面内受压和垂向载荷作用下的金属折叠式夹层板结构数值模型,基于屈曲特征值确定屈曲极限强度分析的初始缺陷;考虑结构初始缺陷,计算得到夹层板结构的后屈曲极限强度;对金属折叠式夹层板在不同组合载荷作用下的横向、纵向后屈曲极限承载能力进行计算分析;并与传统加筋结构对比,结果显示本文设计的金属折叠式夹层板结构具有更优异的稳定性和极限承载力,结果对金属夹层板的应用与强度设计提供参考。
Corrugated core sandwich panel is widely employed in ship building due to its excellent mechanical properties. The same-weight design of U-type corrugated core sandwich panel under constrained nonlinear post-buckling strength is investigated herein considering the combined compression loading. Firstly, The feasibility and accuracy of numerical simulation method is verified by comparing the empirical formulas and relevance judgments. Then a finite element model of sandwich panels under biaxial compression and lateral pressure is constructed to obtain the buckling eigenvalue and initial imperfection for post-buckling strength analysis. The comparison results showed that the sandwich panel has better stability and ultimate bearing capacity. Finally, the post-buckling ultimate bearing capacities of sandwich panel longitudinal and transverse directions under combined loading are studied. The results may be of guidance for optimal design of new type ship structures.
2018,40(9): 43-47 收稿日期:2017-06-26
DOI:10.3404/j.issn.1672-7649.2018.09.008
分类号:U661.43;O242. 21
基金项目:国家自然科学基金青年基金资助项目(E091002/51109101);江苏省高校自然科学研究重大资助项目(17KJA580002)
作者简介:洪婷婷(1988-),女,工程师,研究方向为船舶与海洋工程结构
参考文献:
[1] PENTTI KUJALA, ALAN KLANAC. Steel sandwich panels in marine applications[J]. Brodogradnja, 2005, 56(4):305-314
[2] KOLSTERS H,WENNHAGE P. Optimization of laser-welded sandwich panels with multiple design constraints[J]. Marine Structures, 2009(22):154-171
[3] PAIK J K, THAYAMBALLI A K. Ultimate limit state design of steel plated structures[M]. John Wiley & Sons, Chichester, U.K., 2003.
[4] CHEN Qing-yuan, QIAO Pi-zhong. Post-buckling analysis of composite plates under combined compression and shear loading using finite strip method[J]. Finite Elements in Analysis and Design, 2014, 83:33-42
[5] A. Post-buckling behavior of composite and sandwich skew plates[J]. International Journal of Non-Linear Mechanics, 2013, 55:120-127
[6] MARIAN Bogdaniuk, ZENON Górecki, MARIUSZ Brzóska. FEM analysis of ultimate strength of steel panels[J]. Polish Maritime Research, 2006(S1):21-23
[7] MAREK Augustyniak, GRZEGORZ Porembski. FEM strength analysis of sandwich panels for ship structure applications[J]. Polish Maritime Research, 2006(S1):24-26
[8] 张伟, 单成林. 钢-聚氨酯夹层板稳定分析[J]. 低温建筑技术, 2014, 1:46-49
[9] 于耀, 王伟. 夹层板复杂弯曲极限强度性能研究[J]. 中国舰船研究, 2014(3):76-82
[10] 陈庆强, 张海华, 吴赞. 船体结构钢夹层板强度计算方法研究[J]. 中国造船, 2015(2):74-80
[11] METIN A, TOLGA A. Buckling of cross-ply composite plates with linearly varying In-plane loads[J]. Composite Structures, 2017
[12] KOZAK J. Problems of strength modeling of steel sandwich panels under in-plane load[J]. Polish Maritime Research, 2006(s1):9-12
[13] DNV. Offshore standard:design of offshore steel structures, general (LRFD method)[S]. 2011.
[14] MOHAMMAD Reza Khedmatia, MOHAMMAD Reza Zareei, PHILIPPE Rigo. Sensitivity analysis on the elastic buckling and ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure[J]. Thin-Walled Structures, 2009(47):1232-1245
[15] MARK W H, JAMES H S. Effects of Imperfections of the Buckling Response of Composite Shells[J]. Thin-Walled Structures, 2004(42):369-397
[16] 张婧, 施兴华, 顾学康. 具有初始缺陷的船体加筋板结构在复杂受力状态下的极限强度研究[J]. 中国造船, 2013, 54(1):60-70
[17] ZHANG Sheng-ming, IMTAZ KHAN. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Marine Structures, 2009(22):791-808
[18] 张晓丹. 加筋板极限强度的简化算法[D].武汉:武汉理工大学, 2010.
[19] 刘昆, 张延昌, 王璞, 等. 半潜式钻井平台撑杆结构极限承载力数值仿真计算[J]. 江苏科技大学学报:自然科学版, 2012, 26(5):430-433
[20] 刘昆, 张延昌, 王自力. 基于Abaqus船体板架极限承载能力仿真分析[C]//纪念辛一心先生诞辰100周年暨2012年船舶学术会议文集, 2012, 189-198.