随着海洋活动增加,军舰、商船、海上钻井平台等海洋构筑物表面滑摔现象频发,已经严重影响人员安全和海洋事业的发展。为了解决这个问题,世界各国纷纷利用表面处理技术制备各类涂层,提高海洋构筑物表面的防滑性能。本试验采用等离子熔覆技术在45钢表面制备TiC/Ni合金粉末制备人体步进防滑涂层,分析了涂层步进摩擦系数、显微组织、摩擦磨损性能、涂层材料和表面形貌对涂层防滑性能的影响。结果表明:加入TiC不仅提高了涂层的耐磨性,还提高了涂层的步进摩擦系数。随着TiC含量的增加,涂层摩擦系数和耐磨性均增加,除此之外涂层表面三维形貌、涂层材料都会对步进摩擦产生影响,并且干态摩擦系数大于湿态摩擦系数;相对于等离子喷涂制备的涂层,等离子熔覆制备的涂层虽然步进摩擦系数略低,但耐磨性明显提高。
With the increase of offshore activities, slipping phenomenon on the surface of offshore structures such as warships, merchant ships, offshore drilling platforms, etc. has seriously affected the safety of personnel as well as the development of offshore facilities. In order to increase the slip resistance of the surface of offshore structure, experimenters all around the world have used surface treatment technology to prepare coatings. In this study, TiC/Ni alloy powder was coated on 45 steel by Plasma Transferred Arc, then the effect of friction and wear properties, microstructure and coating materials on the slip resistance of the coating were analyzed. The results show that the wear resistance and the step friction coefficient of the coating were improved by the addition of TiC. With the increase of TiC content, the step friction coefficient and wear resistance of the coating are improved. In addition, the step friction coefficient is affected by the surface morphology and the material of coating, while the step friction coefficient in the dry atmosphere is greater than that in the wet atmosphere. Compared with the coating prepared by plasma spraying technology, the coating prepared by plasma transferred arc has a obvious superiority of the wear resistance in spite of a low step friction coefficient.
2018,40(9): 82-88 收稿日期:2017-11-02
DOI:10.3404/j.issn.1672-7649.2018.09.016
分类号:TB33
基金项目:国家自然科学基金面上资助项目(51175149);河南省科技攻关资助项目(172102210262);中国博士后科学基金资助项目(2017M612393)
作者简介:张振凯(1987-),男,硕士研究生,从事摩擦磨损方面的研究
参考文献:
[1] 白杨, 刑路阔, 李相波, 等. 海洋环境防滑涂层技术研究进展[J]. 腐蚀科学与防护技术, 2013, 25(6):540-542
[2] 周广青. 船舶甲板防滑层研究[J] 船舶甲板防滑层研究[J]. 涂料工业, 2014, 44(1):57-60
[3] 洪伟宏. 国外航母甲板防滑涂料技术现状及其法发展趋势[J]. 舰船科学技术, 2015, 37(12):166-169
[4] 古美, 姜秀杰, 冷晓飞, 等. 飞机防滑涂料概述[J]. 中国涂料, 2013, 28(7):69-71
[5] 郑劲东. 国外舰载飞机甲板用防滑涂层的研究与进展[J]. 舰船科学技术, 2003, 25(5):87-89
[6] 靳生, 刘谦, 戴庆荣. 电弧喷涂制备Al/Al2O3耐磨防滑涂层工艺优化和摩擦学性能研究[J]. 中国表面工程, 2003(2):10-12, 16
[7] 张秀英, 贺定勇, 曹轶, 等. 耐磨防滑热喷涂粉芯线材的研究[J]. 机械工程材料, 2000, 24(5):37-38
[8] 苏景新, 路鹏程, 王志平. Ni-Al防滑涂层性能[J]. 焊接学报, 2013, 34(3):65-68
[9] 胡传恒, 杜三明, 张永振. 等离子喷涂陶瓷涂层的动态防滑性能和耐磨[J]. 润滑与密封, 2014, 39(11):42-46
[10] 吴庆丹, 刘黎明, 徐海峰, 等. 火焰喷涂和等离子喷涂FeCrBSi涂层及其防滑和耐磨性能研究[J]. 表面技术, 2017, 46(7):104-109
[11] 胡传恒, 杜三明, 牛永平, 等. 离子喷涂Al2O3-TiO2防滑涂层制备及其耐磨性[J]. 材料热处理学报, 2014, 35(5):171-175
[12] CHUNG Seo Park, MONG kyu Chung, Non-Skid Coatings for Offshore Structures[J]. 2010, 42-46.
[13] 曹明, 吴玉萍, 胡俊华, 等. 离子熔覆TiC/Ni超厚梯度熔覆层的组织与性能[J]. 焊接学报, 2008, 29(2):13-16
[14] 毕晓勤, 杨仲磊, 胡小丽. 等离子熔覆Ni-Cr合金涂层的组织与性能研究[J]. 材料工程, 2009, 5:26-29
[15] Kai Way LI, Wen-Ruey CHANG, Tom B. LEAMON, Floor slipperiness measurement:friction coefficient, roughness of floors, and subjective perception under spillage conditions[J]. Safety Science, 2004(42):547-565
[16] STEVENSON M. Measurement of slip resistance of shoes on floor surfaces, Part 1:Methods[J]. Journal of Occupational Health Safety-Australia and New Zealand, 1989(5):115-120
[17] GRONQVIST R. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors[J]. Ergonomics, 1995(38):224-241
[18] LECLERCQ S. Tribological concepts involved in slipping accident analysis[J]. Ergonomics, 1995(38):197-208
[19] 钱书琨, 蒋冬青, 汪新衡, 等. 铝合金表面添加La2O3激光熔覆Ni基WC金属陶瓷涂层研究[J]. 机械强度, 2014, 36(5):694-698
[20] 张佳红, 孙荣禄, 牛伟. 激光熔覆原位自生TiC-CrxSy/Ni基复合[J]. 金属热处理, 2015, 40(10):40-44