泡沫铝夹层板具有优异的力学性能和可设计性,近年来被广泛应用于船舶制造等领域。本文基于实验测得的泡沫铝夹层板材料力学性能参数及本构关系,建立泡沫铝夹层板抗侵彻的有限元仿真模型,研究其抗侵彻性能及其参数影响。通过准静态压缩实验测试,建立夹层板面板和芯材的力学性能参数及材料本构模型。重点研究对比了半球形弹体侵彻载荷下,泡沫铝芯层厚度、芯材密度等参数对结构抗侵彻性能、结构失效模式和变形机制的影响。实验及仿真结果表明:夹层板各部分的变形程度有所差异;随着弹体冲击速度的提高,夹层板的吸能能力均呈现先减小后增大的趋势;弹道极限速度随着泡沫铝夹层板芯层厚度或芯材密度的增大而增大,且弹道极限速度分别与芯层厚度或芯材密度近似线性。
Sandwich plates with steel skins and aluminum foam core have got an widely application in engineering such as the ship building due to the excellent mechanical properties and designability. Based on mechanical properties and constitutive models of aluminum foam obtained by experimental tests, finite element simulation model is established to research the anti-penetration performance of sandwich plates with steel skins and aluminum foam. The mechanical properties and constitutive models of skin and foam core are obtained by quasi-static compression tests. This paper mainly investigated the influence of core thickness, densities and other parameters of sandwich plates on anti-penetration performances, failure modes and deformation mechanisms under the impact of hemispherical-nosed projectile. The results showed that the deformation of each part of sandwich plates is different. The energy absorption capability of sandwich plates decreases first and then increases with the increase of initial velocity. The ballistic limit velocity increases with the increase of thickness of core or core density which shows an approximate linear relationship.
2018,40(10): 12-17 收稿日期:2017-07-29
DOI:10.3404/j.issn.1672-7649.2018.10.003
分类号:O347.3
基金项目:国家自然科学基金青年基金资助项目(51109101,51509115);江苏省高校自然科学研究重大资助项目(17KJA580002);江苏省高校重点实验室开放研究基金课题资助项目
作者简介:吴捷(1993-),男,硕士研究生,主要从事船舶结构力学性能研究
参考文献:
[1] MOURITZ A P, GELLERT E, BURCHHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53:21-41.
[2] BARNES A T, RAVI-CHANDAR K, KYRIAKIDES S, et al. Dynamic crushing of aluminum foams:Part I-Experiments[J]. International Journal of Solids & Structures, 2014, 51(9):1631-1645.
[3] GAITANAROS S, KYRIAKIDES S. Dynamic crushing of aluminum foams:Part Ⅱ-Analysis[J]. International Journal of Solids & Structures, 2014, 51(9):1646-1661.
[4] HOU W, ZHU F, LU G, et al. Ballistic impact experiments of metallic sandwich panels with aluminum foam core[J]. International Journal of Impact Engineering, 2010, 37(10):1045-1055.
[5] GHALAMI-CHOOBAR M, SADIGHI M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber-metal laminates skins and polyurethane core[J]. Aerospace Science & Technology, 2014, 32(1):142-152.
[6] FENG D, AYMERICH F. Damage prediction in composite sandwich panels subjected to low-velocity impact[J]. Composites Part A Applied Science & Manufacturing, 2013, 52(52):12-22.
[7] D D RADFORD, G J MCSHANE, V S DESHPANDE, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J]. International Journal of solids and structures 2006(43) 2243-2259.
[8] ZHANG G, WANG B, MA L, et al. Response of sandwich structures with pyramidal truss cores under the compression and impact loading[J]. Composite Structures, 2013, 100(5):451-463.
[9] 陈一鸣, 田阿利. 夹层板脱层对结构振动特性的影响分析[J]. 舰船科学技术, 2016, 38(13):11-15. CHEN Yi-ming, TIAN A-li. Effect analysis of delamination for vibration characteristic of sandwich plate[J]. Ship Science and Technology, 2016, 38(13):11-15.
[10] ZHANG G, WANG B, MA L, et al. The residual compressive strength of impact-damaged sandwich structures with pyramidal truss cores[J]. Composite Structures, 2013, 105(8):188-198.
[11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
[12] GUO Zi-tao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums[D]. Harbin:Harbin Institute of Technology, 2012.
[13] 牛卫晶. 冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究[D]. 太原:太原理工大学, 2015. NIU Wei-Jin. Research on the penetration behavior of sandwich protective structures with aluminum foam cores under impact loading[D]. Taiyuan:Taiyuan University Of Technology, 2015.
[14] 杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究[J]. 科学技术与工程, 2011, 11(15):3377-3383. YANG Fei, WANG Zhi-hua, ZHAO Long-mao. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels[J]. Science Technology and Engineering, 2011, 11(15):3377-3383.