本文基于Abaqus/Standard弧长法和阻尼因子法、Abaqus/Explicit和Budiansky-Roth动力屈曲准则计算轴压和径向均布外压耦合作用下金属薄壁光筒圆柱壳非线性静力及动力屈曲特性,通过与实验及Southwell方法对比验证了数值方法的有效性。采用数值方法分析了轴压与径向均布瞬态外压耦合作用下网格加筋圆柱壳动力屈曲特性,针对瞬态外压载荷峰值和脉宽特点,通过不同搜索方法得到了载荷时间特性对网格加筋圆柱壳动力屈曲临界失稳线的影响。结果表明:瞬态外压载荷脉宽在结构一阶固有周期附近时,动力屈曲临界载荷随着脉宽的增加迅速下降;当载荷脉宽超过结构一阶固有周期时,临界载荷和屈曲波纹数随脉宽增加而减小;当载荷脉宽远超过结构一阶固有周期时,动力屈曲临界载荷趋近于静力屈曲临界载荷。
Arc length method and damping factor method based on Abaqus/Standard, and ABAQUS/Explicit combined with Budiansky-Roth criterion are adopted to simulate the static and dynamic buckling behavior of cylindrical shells under pre-loaded axial compression combined with radial pressure. The validity of numerical method is proved by comparison with experimental and Southwell results. And the buckling of a grid stiffened cylindrical shell under pre-loaded axial compression combined with radial transient pressure is predicted by numerical method. The influence of time characteristic on the dynamic buckling critical failure line is obtained by different search methods. It is shown that when the duration of transient load is near the first order natural period of the structure, the buckling critical load decreases rapidly; when the load duration exceeds the first order natural period of the structure, the critical load and corrugated numbers decrease, and when the load duration far exceeds the first order natural period of the structure, the dynamic buckling load is close to static buckling critical load.
2018,40(10): 18-23 收稿日期:2018-01-28
DOI:10.3404/j.issn.1672-7649.2018.10.004
分类号:O383.1
基金项目:国家自然科学基金重点资助项目(U1430236)
作者简介:刘文成(1993-),男,硕士研究生,研究方向为船舶与海洋结构物强度
参考文献:
[1] 严东晋, 宋启根. 结构冲击屈曲准则讨论[J]. 工程力学, 1997, 14(4):18-28.
[2] 彭英. 冲击载荷下加筋板结构的非线性动力响应及屈曲研究[D]. 武汉:武汉理工大学, 2007.
[3] ANDERSON D L, LINDBERG H E. Dynamic pulse buckling of cylindrical shells under transient lateral pressures[J]. AIAA Journal, 1968, 6(4):589-598.
[4] PEGG N G. Effects of impulse duration and combined impulse-hydrostatic pressure on buckling stability of cylindrical structures[J]. Journal of Ship Research, 1994, 38(2):164-171.
[5] BISAGNI C. Dynamic buckling of fiber composite shells under impulse axial compression[J]. Thin-Walled Structures, 2005, 43(3):499-514.
[6] PEDRON C. Dynamic buckling of stiffened cylindrical shells of revolution under a transient lateral pressure shock wave[J]. Thin-Walled Structures, 1995, 23(1-4):85-105.
[7] 江松青, 李永池, 王红五, 等. 环向加筋圆柱壳轴向弹塑性动力屈曲[J]. 振动与冲击, 2001, 20(4):81-86.
[8] 袁建红, 朱锡, 张振华. 水下爆炸载荷作用下环肋加筋圆柱壳结构的弹塑性动力屈曲[J]. 爆炸与冲击, 2012, 32(6):585-591.
[9] BUDIANSKY B, ROTH R S. Axisymmetric dynamic buckling of clamped shallow spherical shells[C]//Collected Papers on Instability of Shell Structures. Hampton:NASA Langley Research Center, 1962:597-606.
[10] 李朋波. 薄壁加筋圆柱壳静动力屈曲特性数值模拟与实验研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
[11] Dasssault Systèmes Simulia Corp. ABAQUS User's Manual[M]. (Version 6.11). Pawtucket USA:ABAQUS, Inc., 2011.
[12] MEYER-PIENING H R, FARSHAD M, GEIER B, et al. Buckling loads of CFRP composite cylinders under combined axial and torsion loading experiments and computations[J]. Composite Structures, 2001, 53(4):427-435.
[13] 彭大炜, 张世联. 结构极限强度分析的三种有限元解法研究[J]. 中国海洋平台, 2010, 25(2):1-5.
[14] GIEZEN J J, BABCOCK C D, SINGER J. Plastic buckling of cylindrical shells under biaxial loading[J]. Experimental Mechanics, 1991, 31(4):337-343.
[15] LINDBERG H E, FLORENCE A L. Dynamic pulse buckling-theory and experiment[M]. Dordrecht:Martinus Nijhoff Publishers, 1987.
[16] SOUTHWELL R V. On the analysis of experimental observations in problems of elastic stability[C]//Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. London:Royal Society Publishing, 1932:601-616.