在主被动混合隔振技术中,电磁作动器的气隙高度决定系统磁阻并影响作动器输出力。目前电磁作动器与高度可控的气囊被动隔振器并联,集成有解决冲击摇摆防护问题的悬挂可脱开机构,构成了工程实用化的主被动隔振器,但使用更广的橡胶隔振器由于高度不可控、难以与电磁作动器有效集成。为了同时解决气隙控制和冲击防护两项问题,采用楔块与螺旋传动的组合来实现气隙调整、弹簧悬吊架机构来提供足够的冲击防护空间。设计兼顾了自锁与小型化的优点,达成了气隙控制与冲击摇摆防护同时实现的目标,静力学仿真与模态分析显示该机构刚度强度合理、各阶模态频率可避开工作频率范围、可有效传递作动器输出力。
During the research of active-passive vibration isolation technology, it has been confirmed that the output force of the electromagnetic actuator is determined by reluctance which is influenced by the air gap. The electromagnetic actuator used recently has been paralleled with air spring whose height is able to be changed. Also, to protect the actuator from collapse when vacillate occurs, a disengageable suspended structure is applied. However, rubber springs which are used more widely aren't able to change the height. In order to solve the problems simultaneously, wedges-spiral to adjust height and spring-suspension to prevent collapse are applied. The spiral has the advantages of both self-lock and miniaturization. The aim of air-gap control and impact protection have been achieved. The static analysis together with modal analysis have shown that the new designed structure will be able to fulfill the requirement in rigidity and frequency.
2018,40(10): 24-28 收稿日期:2017-07-06
DOI:10.3404/j.issn.1672-7649.2018.10.005
分类号:TH132.1
作者简介:尹天齐(1993-),男,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] 何琳, 徐伟. 舰船隔振装置技术及其进展[J]. 声学学报, 2013, 38(2):128-136. HE Lin, XU Wei. Naval vessel machinery mounting technology and its recent advances[J]. Chinese Journal of Acoustics, 2013, 38(2):128-136.
[2] 李彦, 何琳. 船舶机械磁悬浮气嚢混合隔振技术[J]. 声学学报, 2015, 40(5):751-760. LI Yan, HE Lin. Vibration isolation technology for ship machinery using electromagnetic actuator and air spring[J]. Chinese Journal of Acoustics, 2015, 40(5):751-760.
[3] Tau Meng LIM, Shanbao CHENG. Magnetic levitation of a one DOF system using simultaneous actuation and displacement sensing technique[J]. Mechatronics, 2011, 21:548-559.
[4] E. Self-sensing for electromagnetic actuators. Part Ⅰ:A coupled reluctance network model approach[J]. Sensors and Actuators A:Physical, 2011, 172:400-409.
[5] Changhwan CHOI, Kyihwan PARK. Self-sensing magnetic levitation using a LC resonant circuit[J]. Sensors and Actuators A:Physical, 1999, 72:169-177.
[6] S. Active vibration control for marine applications[J]. Control Engineering Practice, 2004(12):465-474.
[7] 黄海. 磁悬浮浮筏主动隔振系统动力学理论模型研究[D]. 武汉:武汉理工大学, 2010. HUANG Hai. Research on the dynamics theory model of magnetic floating raft active isolation system[D]. Wuhan:Wuhan University of Technology, 2010.
[8] 宋勇, 靖建全. 复杂非金属减震结构的建模与等效研究[J]. 舰船科学技术, 2017, 39(6):88-93. SONG Yong, JING Jian-quan. Research on the equivalence and modelling of the nonmetallic isolator with complicate structure[J]. Ship Science and Technology, 2017, 39(6):88-93.