螺旋桨激励力引起的桨-轴-艇耦合系统低频振动为舰船声辐射的主要组成之一,一般难以有效抑制,已成为制约舰船声隐身性能提升的重要问题。目前抑制舰船低频振动声辐射的有效手段是减小螺旋桨激励力通过轴系向艇体传递,而主动控制由于在低频振动控制方面具有较强的优越性,自然地成为一条重要的新途径,为此急需开展轴系纵向振动主动控制相关技术研究。本文详细总结了国内外舰船轴系纵向振动产生机理、控制方案及主要差距,论述了轴系纵向振动主动控制基本原理与建模方法,首次系统阐述了适合工程应用的轴系纵向振动主动控制策略及自适应算法,给出了轴系纵向振动主动控制试验验证案例,结果表明主动控制效果明显,并基于现有研究成果对舰船轴系纵向振动主动控制技术未来的发展方向提出建议,为解决舰船低频振动声辐射问题提供参考和指导。
The propeller-shafting-hull coupled vibration due to the propeller excitation is the main reason of the low frequency vibration and noise radiation of naval marine, which is very difficult to be controlled. It has become an important bottleneck restricting the acoustic stealth performance of ships. At present, the effective means to restrain the low-frequency vibration acoustic radiation of ships is to reduce the transmission of the thrust pulsation to the hull. Being provided with the advantage, the active control method will be an important and new approach. So it is urgently needed for research on the longitudinal vibration control of shafting. In this paper, the mechanism, control scheme and main difference of the longitudinal vibration of ship shafting at home and abroad are summarized. The basic principle and modeling method of axial longitudinal vibration control are discussed. Main control strategy and adaptive control algorithm of active vibration system for engineering applications are first introduced. The case of active control test for axial vibration of shafting is given, and the test results show that the control effect is obvious. Finally, the deep research suggestions of active control the longitudinal vibration of propulsion shaft system are put forward, which providing reference and guidance for solving low frequency vibration and noise of naval marine.
2018,40(11): 1-8 收稿日期:2018-02-26
DOI:10.3404/j.issn.1672-7649.2018.11.001
分类号:U664.33
基金项目:国家自然科学基金资助项目(51609226)
作者简介:黄志伟(1982-),男,博士,工程师,研究方向为舰船减振降噪技术
参考文献:
[1] 朱石坚, 何琳. 船舶机械振动控制[M]. 北京:国防工业出版社, 2006.
[2] 俞孟萨, 黄国荣, 伏同先. 潜艇机械噪声控制技术的现状与发展概述[J]. 船舶力学, 2003, 7(4):110-120. YU Meng-sa, HUANG Guo-gong, FU Tong-xian. Development review on mechanical-noise control for submarine[J]. Journal of Ship Mechanics, 2003, 7(4):110-120.
[3] CARLTON J. Marine propellers and propulsion[M]. London:Butterworth-Heinemann, 2012.
[4] 赵耀, 张赣波, 李良伟. 船舶推进轴系纵向振动及其控制技术研究进展[J]. 中国造船, 2011, 52(4):259-269. ZHAO Yao, ZHANG Gan-bo, LI Liang-wei. Review of advances on longitudinal vibration of ship propulsion shafting and its control technology[J]. Shipbuilding of China, 2011, 52(4):259-269.
[5] FENG G P, ZHANG Z Y, CHEN Y, et al. Research on transmission paths of a coupled beam-cylindrical shell system by power flow analysis[J]. Journal of Mechanical Science and Technology, 2009, 23(8):2138-2148.
[6] 李增光. 推进轴系-船体结构低频弯曲振动耦合特性[J]. 中国舰船研究, 2016, 11(3):74-78. LI Zeng-guang. The bending vibration characteristic of a propulsion shafting and hull structure coupled system at low frequencies[J]. Chinese Journal of Ship Research, 2016, 11(3):74-78.
[7] TRINDADE M A, BENJEDDOU A, OHAYON R. Finite element modeling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams-part I:formulation[J]. International Journal for Numerical Methods in Engineering, 2001, 51(7):835-854.
[8] TRINDADE M A, BENJEDDOU A, OHAYON R. Finite element modeling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams-part Ⅱ:system analysis[J]. International Journal for Numerical Methods in Engineering, 2001, 51(7):855-864.
[9] DALEY S, JOHNSON F A, PEARSON J B, et al. Active vibration control for marine applications[J]. Control Engineering Practice, 2004, 12(4):465-474.
[10] CARESTA M. Active control of noise radiated by a submarine in bending vibration[J]. Journal of Noise and Vibration, 2011, 330(4):615-624.
[11] RIGBY C P. Longitudinal vibrations of marine propulsion shafting[J]. Journal of the American Society for Naval Engineers, 1948, 60(3):341-365.
[12] GOODWIN A J H. The design of a resonance changer to overcome excessive axial vibration of propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1960, 72:37-63.
[13] LEWIS D W, ALLAIRE P E, THOMAS P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems-part 1:system natural frequencies and laboratory scale model[J]. Tribology Transactions, 1989, 32(2):170-178.
[14] LEWIS D W, HUMPHRIS R R, THOMAS P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems-part 2:control analysis and response of experimental system[J]. Tribology Transactions, 1989, 32(2):179-188.
[15] BAZ A, GILHEANY J, STEIMEL P. Active vibration control of propeller shafts[J]. Journal of Noise and Vibration, 1990, 136(3):361-372.
[16] PAN J, FARAG N, LIN T, et al. Propeller induced structural vibration through the thrust bearing[C]//Proceedings of the Annual Conference of the Australian Acoustical Society Adelaide, Australia:AAS, 2002:13-15.
[17] JOHNSON B G, HOCKNEY R, EISENHAURE D, et al. System and method for damping narrow band axial vibrations of a rotating device:US5291975[P]. 1994-03-08.
[18] DYLEJKO P G, KESSISSOGLOU N J, TSO Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Noise and Vibration, 2007, 300(1/2):101-116.
[19] DYLEJKO P G. Optimum resonance changer for submerged vessel signature reduction[D]. Sydney:University of New South Wales, 2007.
[20] MERZ S, KESSISSOGLOU N, KINNS R, et al. Optimisation of a submarine's resonance changer using the method of moving asymptotes[C]//Proceedings of ACOUSTICS Adelaide, Australia:Australian Acoustical Society, 2009.
[21] MERZ S, KESSISSOGLOU N, KINNS R, et al. Minimisation of the noise power radiated by a submarine through optimisation of its resonance changer[J]. Journal of Noise and Vibration, 2010, 329(8):980-993.
[22] 俞强, 王磊, 刘伟. 舰船推进轴系的螺旋桨激励力传递特性[J]. 中国舰船研究, 2015, 10(6):81-86, 94. YU Qiang, WANG Lei, LIU Wei. Transmission characteristics of propeller excitation for naval marine propulsion shafting[J]. Chinese Journal of Ship Research, 2015, 10(6):81-86, 94.
[23] 曾革委. 螺旋桨轴系艇体半主动控制仿真[C]//2005年船舶结构力学学术会议论文集. 舟山:中国造船工程学会, 2005:519-523.
[24] 谢基榕, 沈顺根, 吴有生. 推进器激励的艇体辐射噪声及控制技术研究现状[J]. 中国造船, 2010, 51(4):234-241. XIE Ji-rong, SHEN Shun-gen, WU You-sheng. Research status on noise radiation from vibrating hull induced by propeller and reduction measures[J]. Shipbuilding of China, 2010, 51(4):234-241.
[25] 曹贻鹏, 张文平. 使用动力吸振器降低轴系纵振引起的水下结构辐射噪声研究[J]. 哈尔滨工程大学学报, 2007, 28(7):747-751. CAO Yi-peng, ZHANG Wen-ping. Using dynamic absorbers to reduce underwater structural noise due to longitudinal vibration of shafting[J]. Journal of Harbin Engineering University, 2007, 28(7):747-751.
[26] 刘耀宗, 王宁, 孟浩, 等. 基于动力吸振器的潜艇推进轴系轴向减振研究[J]. 振动与冲击, 2009, 28(5):184-187. LIU Yao-zong, WANG Ning, MENG Hao, et al. Design of dynamic vibration absorbers to reduce axial vibration of propelling shafts of submarines[J]. Journal of Vibration and Shock, 2009, 28(5):184-187.
[27] 王家盛. 基于原理模型的潜艇推进轴系纵向减振技术实验研究[D]. 长沙:国防科学技术大学, 2009.
[28] 李良伟, 赵耀, 李天匀, 等. 控制船舶轴系纵向振动的动力吸振器参数优化研究[J]. 船舶力学, 2012, 16(3):307-319. LI Liang-wei, ZHAO Yao, LI Tian-yun, et al. Parameters optimization of the dynamic absorber to control the axial vibration of marine shafting system[J]. Journal of Ship Mechanics, 2012, 16(3):307-319.
[29] 李攀硕. 轴-壳体耦合振动建模与主动控制方法研究[D]. 上海:上海交通大学, 2012.
[30] 杨志荣. 舰艇轴系纵振特性及基于磁流变弹性体的半主动控制技术研究[D]. 上海:上海交通大学, 2014.
[31] 李清云. 磁流变弹性体舰船推进轴系纵振吸振器的设计与实验[D]. 上海:上海交通大学, 2015.
[32] 殷永康. 变刚度动力吸振技术控制轴系非平稳振动的研究[M]. 上海:上海交通大学, 2014.
[33] 孟浩. 基于声子晶体理论的潜艇推进轴系纵向减振技术研究[D]. 长沙:国防科学技术大学, 2007.
[34] ZHANG Z Y, HU F, WANG J F. On saturation suppression in adaptive vibration control[J]. Journal of Noise and Vibration, 2010, 329(9):1209-1214.
[35] HU F, CHEN Y, ZHANG Z Y, et al. Tonal vibration suppression with a model-free control method[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2012, 226(4):360-370.
[36] 胡芳, 张志谊, 吴天行, 等. 含橡胶轴承轴系振动传递主动控制研究[J]. 振动与冲击, 2014, 33(20):63-69. HU Fang, ZHANG Zhi-yi, WU Tian-xing, et al. Active vibration transmission control of a shafting system with water lubricated rubber bearings[J]. Journal of Vibration and Shock, 2014, 33(20):63-69.
[37] 冯国平. 基于功率流的艇体艉部振动传递特性研究[D]. 上海:上海交通大学, 2010.
[38] CRAIG R R. Substructure methods in vibration[J]. Journal of Vibration and Acoustics, 1995, 117(B):207-213.
[39] WU L F, QIU X J, GUO Y C. A simplified adaptive feedback active noise control system[J]. Applied Acoustics, 2014, 81:40-46.
[40] LANDAU I D, CONSTANTINESCU A, REY D. Adaptive narrow band disturbance rejection applied to an active suspension-an internal model principle approach[J]. Automatica, 2005, 41(4):563-574.
[41] TOMIZUKA M. Dealing with periodic disturbances in controls of mechanical systems[J]. Annual Reviews in Control, 2008, 32(2):193-199.
[42] ÅSTRÖM K J, WITTENMARK B. Adaptive control[M]. 2nd ed. Mineola, New York:Dover Publications, 2008.
[43] BOHN C, CORTABARRIA A, HÄRTEL V, et al. Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling[J]. Control Engineering Practice, 2004, 12(8):1029-1039.
[44] DU H, ZHANG L, LU Z, et al. LPV technique for the rejection of sinusoidal disturbance with time-varying frequency[J]. IEEE Proceedings-Control Theory and Applications, 2003, 150(2):132-138.
[45] NIEDZWIECKI M, MELLER M. A new approach to active noise and vibration control-part I:the known frequency case[J]. IEEE Transactions on Signal Processing, 2009, 57(9):3373-3386.
[46] NIEDZWIECKI M, MELLER M. A new approach to active noise and vibration control-part Ⅱ:the unknown frequency case[J]. IEEE Transactions on Signal Processing, 2009, 57(9):3387-3398.
[47] 胡芳. 推进轴系纵向振动主动控制方法研究[D]. 上海:上海交通大学, 2015.
[48] DOUGLAS S C. Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control[J]. IEEE Transactions on Speech and Audio Processing, 1999, 7(4):454-465.
[49] CABELL R H, FULLER C R. A principal component algorithm for feed forward active noise and vibration control[J]. Journal of Noise and Vibration, 1999, 227(1):159-181.
[50] CARNEAL J P, CHARETTE F, FULLER C R. Minimization of noise radiation from plates using adaptive tuned vibration absorbers[J]. Journal of Noise and Vibration, 2004, 270(4-5):781-792.
[51] 王俊芳. 自适应主动隔振的理论和实验研究[D]. 上海:上海交通大学, 2008.
[52] ZHANG Z Y, HUANG X C, CHEN Y, et al. Underwater noise radiation control by active vibration isolation:an experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2009, 223(4):503-515.
[53] ZHANG Z, HU F, LI Z, et al. Modeling and control of the vibration of two beams coupled with fluid and active links[J]. Shock and Vibration, 2012, 19(4):653-668.
[54] ZHANG Z Y, CHEN Y, LI H G, et al. Simulation and experimental study on vibration and noise radiation control with piezoelectric actuators[J]. Shock and Vibration, 2011, 18(1-2):343-354.