针对均布载荷作用下混杂层合薄板弯曲刚度特性及其铺层优化设计问题展开研究。首先,基于经典层合薄板理论,以板中心挠度为弯曲刚度评价基准,分析表明影响弯曲刚度的主要因素为D11和D22;然后推导了混杂比ζ与弯曲刚度系数的关系式,分析结果显示,具有相同混杂比时,夹层混杂方式较层间混杂方式具有更为优异的抗弯刚度特性;最后,基于层合梁弯曲试验,测得了不同混杂比时T700/E800/350环氧夹层混杂梁的表观弯曲模量。试验与理论分析结果对比分析表明:夹层混杂结构弯曲刚度系数的理论计算可以预测层合薄板实际的弯曲刚度系数,相关理论分析结果可供混杂复合材料层合板抗弯刚度铺层设计提供理论依据。
This paper studies the bending stiffness and the optimal design of laminated plates under uniform load. Firstly, based on the classical laminated plate theory, choose the deflection of the plate as the evaluation criterion of the bending stiffness, and finding that the main factors affecting the bending stiffness are D11 and D22. Furthermore, the paper derives the relationship of the ζ and the bending stiffness coefficient D11; the analysis results show that the sandwich hybrid has higher bending stiffness than the interlayer hybrid. Finally, based on the bending test of laminated beam, the paper measures the apparent bending modulus of T700/E800/350 epoxy hybrid beams with different mixing ratios. Based on the comparison between the experimental and theoretical analysis results, the theoretical calculation of the bending stiffness coefficient of sandwich hybrid structure can be used to predict the actual bending stiffness coefficient and the results of theoretical analysis can provide a theoretical basis for the design of laminated composite plates.
2018,40(11): 30-34 收稿日期:2017-05-18
DOI:10.3404/j.issn.1672-7649.2018.11.005
分类号:U668.3+4
基金项目:国家自然科学基金资助项目(51609252)
作者简介:王亚楠(1992-),男,硕士研究生,研究方向为结构强度与振动
参考文献:
[1] PERI D, CAMPANA E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Research, 2003, 47(1):1-12.
[2] EEFSEN T, WALREE F V, PERI D. Development of frigate designs with good sea keeping characteristics[C]//9th Symposium on Practical Design of Ships and Other Floating Structures. Luebeck-Travemuende, Germany, 2004.
[3] 冯佰威. 基于多学科设计优化方法的船舶水动力性能综合优化研究[D]. 武汉:武汉理工大学, 2011.
[4] 石小红, 李成友, 王婷婷, 等. 复合材料层合板力学性能试验研究[J]. 工程与试验, 2014(1):39-41+81. SHI Xiao-hong, LI Cheng-you, WANG Ting-ting, et al. Experimental study on mechanical properties of composite laminates[J]. Engineering & Test, 2014(1):39-41+81.
[5] STEEVES CA, FLECK NA. Material selection in sandwich beam construction[J]. Scripta Materialia, 2004, 50:1335-1339.
[6] MARTENS K, CASPEELE R, BELIS J. Development of composite glass beams-a review[J]. Engineering Structures, 2015, 101:1-15.
[7] CHENG QH, LEE HP, LU C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores[J]. Composite Structures, 2006, 74:226-236.
[8] 沈林观, 胡更开, 刘彬. 复合材料力学[M]. (第2版). 北京:清华大学出版社, 2013.
[9] 陈汝训. 混杂纤维复合材料受拉构件的最优混杂比研究[J]. 固体火箭技术, 2005, 3(3):219-221. CHEN Ru-xun. Study on optimal hybrid ratio of hybrid fiber composite tension member[J]. Journal of Solid Rocket Technology, 2005, 3(3):219-221.
[10] 洪彬, 朱一辛, 关明杰. 不同混杂比下竹木复合纤维板的弹性模量[J]. 世界竹藤通讯, 2009(6):9-11. HONG Bin, ZHU Yi-xin, GUAN Ming-jie. MOE of bamboo-wood composite fiberboard with different hybrid ratios[J]. World Bamboo and Rattan, 2009(6):9-11.
[11] 沃丁柱, 李顺林, 王业兴, 等. 复合材料大全[M]. 北京:化学工业出版社, 2000:539-550.
[12] 陈建桥. 复合材料力学概论[M]. 北京:科学出版社, 2006:48-57.
[13] 中华人民共和国国家质量监督检验检疫总局. GB/T 1456.-2005夹层结构弯曲性能试验方法[S]. 北京:中国标准出版社, 2005.