为了提高双层板结构的抗压性能,提出一种双层板填充液体结构,采用简化理论法和有限元法对双层板填充液体结构进行抗压性能分析,并与双层板加筋结构进行比较,结果表明,双层板填充液体结构的抗压性能高于双层板加筋结构,并且对下层板的压力传递系数会随着液体体积模量的增大而逐渐增大;随着液体体积模量K的增加,上、下层板最大弯曲应力向相反的方向变化,且液体体积模量K在(180~300)×102 MPa范围内取值时,对上、下板的承压状态较为有利;双层板加筋结构承压时会出现较大的应力集中现象,不利于结构的承压,而双层板填充液体结构液体受压均匀变形,增加了下层板结构的材料利用率,从而提高整体结构的抗压性能;考虑到结构的规模和经济性,采用材料利用率这一指标进行衡量,当填充液体厚度在150~250 mm范围内取值时,能有效提高整体结构的抗压性能。
In order to improve the compressive performance of the double-layer plate structure, a double-layer plate filled liquid structure is proposed. The compressive performance of the double-layer plate filled liquid structure was analyzed by simplified theory and finite element method. The results showed that, the compressive performance of the double-layer plate filled liquid structure is higher than that of the double-layer plate reinforced structure, and the pressure transfer coefficient of the lower plate will increase with the increase of the liquid bulk modulus. As the liquid bulk modulus K increases, the maximum bending stress of the upper plates evolves in the opposite direction compared with that of the lower plates. When the liquid bulk modulus K is in the range of (180~300)×102 MPa, the compressive performance of the upper and lower plates is more favorable. The larger stress concentration will appear when plate reinforced structure is under pressure, which is not conducive for the structure bearing the pressure. And double-layer plate filled liquid structure deforms uniformly when under pressure, which increases the material utilization of lower plate structure, and the compression performance of the overall structure can thus be improved. When the proportion and economy saving of the structure are both taken into account and the indicator of the material utilization is used for measurement, the compression performance of the overall structure can be improved with the filling liquid thickness falling into the range of 150~200 mm value.
2018,40(11): 39-43 收稿日期:2017-10-12
DOI:10.3404/j.issn.1672-7649.2018.11.007
分类号:U663
基金项目:国家能源局资助项目(NY20150202)
作者简介:滕洪园(1987-),男,助理工程师,主要从事结构设计和力学计算相关工作
参考文献:
[1] 王自力, 顾永宁. 双层舷侧结构碰撞损伤过程研究[J]. 船舶工程, 2000(1):17-20.
[2] 刘元丹, 刘敬喜. 双壳船内壳和外壳结构耐撞性能的分析和比较[J]. 中国造船, 2012, 53(3):121-128.
[3] PAIK J K, CHUNG J Y, PEDERESEN P T, el al. On rational design of double hull tanker structures against collision[C]//The Society of Naval Architectures and Marine Engineers 1999 Annual Meeting Preprints, 1999.
[4] KUROIWA T. Dynamic experiments and numerical simulations of failure of ships side structure[C]//1993.31-37.
[5] SANO A, MURAGISHI O, YOSHIKAWA T. Strength analysis of a new double hull structure for VLCC in collision and grounding[J]. Protection of Ships, San Francisco, Califonia, USA, 1996:22-23.
[6] 周叮. 考虑液面波动和液体压缩时一侧受液作用悬臂梁的横振分析[J]. 应用力学学报, 1994, 11(2):111-119.
[7] 周叮. 两侧受液时悬臂梁的自由振动分析[J]. 工程力学, 1991, 8(3):107-115.
[8] J. Natural vibration of a beam-water interaction system[J]. Journal of Sound and Vibration, 1997, 199:491-512.
[9] J. Natural vibration of two-dimensional slender structure interaction systems subject to Somerfield radiation condition[J]. Journal of Sound and Vibration, 2007, 308:67-79.
[10] 李增, 张志谊. 含弹性连接和层间流体的双梁结构的耦合振动分析[J]. 振动与冲击, 2010, 29(7):189-193.
[11] Kyeong-Hoon JEONG, Gye-Hyoung YOO. Hydroelastic vibration of two identical rectangular plates[J]. Journal of Sound and Vibration, 2004, 272:539-555.
[12] Kyeong-Hoon JEONG. Hydroelastic vibration of two annular plates coupled with a bounded compressible fluid[J]. Journal of Fluid and Structure, 2006, 22:1079-1096.
[13] 王自力, 张延昌. 基于夹层板抗水下爆炸舰船底部结构设计[J]. 舰船科学技术, 2010, 32(1):23-27.
[14] 练章华, 赵国珍. 双层组合套管内填充液体介质的力学分析[J]. 石油钻采工艺, 1997, 19(5):1-5.