大功率全回转推进器是大型海洋装备在复杂海况下确保精确定位的关键推进系统,其水动力学特性将直接影响到整个推进系统的服役性能。基于计算流体力学(CFD)基础理论,建立某型全回转推进器水动力学数值仿真模型,获得其水动力学特性。在此基础上,采用准定常计算方法分析不同回转角度下推进器产生的推力和扭矩,获得其在全回转过程中的水动力学性能变化规律。计算结果表明,当进速比为0.55时该推进器效率达到最大值0.704;在全回转过程中推力系数呈现M型曲线,分别在120°和240°回转角时推力达到最大值。在回转角为120°时,桨叶吸力面与推力面之间压差最大,此时会造成桨叶上产生较大的应力。本文所开展的大功率全回转推进器水动力学特性研究为综合评价其疲劳寿命及服役性能提供了参考依据。
High-power azimuth propulsor is the essential propulsion system to ensure accurate positioning when large marine equipment works under harsh sea conditions. Its hydrodynamic performance has direct impact on the service performance of the whole system. Based on the theory of computational fluid dynamics, the numerical model of high-power azimuth propulsor is established with ICEM CFD and Fluent to obtain its open-water characteristic. For the full rotary process of the propulsor, the quasi-steady method is adopted to analyse its thrust and torque in different rotary angles. Then the trend of its hydrodynamic performance is obtained in the rotary process. The result shows, the efficiency reaches at the maximum value 0.704 when advance coefficient is 0.55. The curve of thrust coefficient is M style during the rotary process. The value of coefficient reaches at the peak when the rotary angle is 120° and 240°. The pressure difference between thrust surface and suction surface is maximum when rotary angle is 120°. The structural stress is maximum on the blade. In this thesis, the hydrodynamic performance and mechanical properties of azimuth propulsor in marine condition are studied comprehensively. This study provides reference for evaluating its service performance and reliability of fatigue life.
2018,40(11): 55-59 收稿日期:2018-03-08
DOI:10.3404/j.issn.1672-7649.2018.11.011
分类号:U661.1
基金项目:国家重点基础研究发展计划资助项目(973计划)(2014CB046704);国家科技支撑计划(2014BAB13B01)
作者简介:李威(1991-),男,硕士研究生,研究方向为结构设计与动力学仿真
参考文献:
[1] 李巍, 王国强, 汪蕾. 螺旋桨粘流水动力特性数值模拟[J]. 上海交通大学学报, 2007, 41(7):1200-1203, 1208. LI Wei, WANG Guo-qiang, WANG Lei. The numerical simulation of hydrodynamics characteristic in propeller[J]. Journal of Shanghai Jiaotong University, 2007, 41(7):1200-1203, 1208.
[2] NORBERT W. H. B. Numerical analysis of flow around a thruster[C]//Dynamic Positioning Conference, US:2006. 86-102.
[3] 朱俊飞, 周瑞平, 林雨, 等. 导管螺旋桨水动力与结构强度计算方法研究[J]. 造船技术, 2012, 4:39-45. ZHU Jun-fei, ZHOU Rui-ping, LIN Yu, et al. Calculation and analysis of the hydrodynamic and structural strength for ducted propeller[J]. Marine Technology, 2012, 4:39-45.
[4] SINGHAL A K, ATHAVALE M M. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124:617-624.
[5] 张利军. 螺旋桨性能预报的速度势面元法研究[D]. 大连:大连理工大学, 2006.
[6] 覃新川, 黄胜, 常欣. 船舶螺旋桨面元法的改进[J]. 华中科技大学学报, 2007, 35(5):65-68. QIN Xin-chuan, HUANG Sheng, CHANG xin. Improvement of the ship panel method[J]. Journal of Huazhong University of Science and technology, 2007, 35(5):65-68.
[7] 王超, 黄胜, 解学参. 基于CFD方法的螺旋桨水动力性能预报[J]. 海军工程大学学报, 2008, 20(4):107-112. WANG Chao, HUANG Sheng, XIE Xue-shen. Hydrodynamic performance prediction of some propeller based on CFD[J]. Journal of Naval University of Engineering, 2008, 20(4):107-112.
[8] MOHAMMED F I, Ayhan AKINTURK. Performance characteristics of static and dynamic azimuthing podded propulsor[C]//First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, 6.