船舶电网是一个容量有限的电源系统,突加突卸大功率负载会对其造成冲击,甚至引起船舶发电机输出电压不稳定,采用经典PID难以满足快速恢复发电机输出电压的功能要求。针对这一问题,提出一种基于自抗扰控制技术的新型励磁控制策略对其进行改进。介绍自抗扰控制器的原理,分析其控制性能较经典PID控制优异的原因,设计自抗扰控制器,在Simulink仿真平台上搭建励磁系统仿真模型,进行仿真实验,仿真结果表明在船舶电力系统突加突卸大功率负载后,新型励磁控制策略较经典PID控制具有更好的快速性和稳定性。
The ship's power grid is a power system with limited capacity. Suddenly unloading large power loads will cause impacts on them, and even cause the ship's generator output voltage to be unstable. Using classical PID is difficult to meet the functional requirements of rapid restoration of generator output voltage. To solve this problem, proposed a novel excitation control strategy based on auto-disturbance rejection control technique to improve it. Introduced the principle of the auto-disturbance rejection controller, and analyzed the reason why the dynamic performance is superior to the classic PID control, designed the auto-disturbance rejection controller, built the simulation model of the excitation system on the Simulink simulation platform and performed the simulation experiment. The simulation results show that the ship power is after the system suddenly unloads large power loads, the new excitation control strategy has better rapidity and stability than the classical PID control.
2018,40(11): 116-120 收稿日期:2018-01-02
DOI:10.3404/j.issn.1672-7649.2018.11.023
分类号:U665.11
作者简介:高国章(1972-),男,博士,副教授,主要从事控制理论与控制工程研究
参考文献:
[1] 陈家伟, 陈杰, 陈冉, 等. 变速风力发电机组自适应模糊控制技术[J]. 中国电机工程学报, 2011, 31(21):93-101.
[2] 陈杰, 陈冉, 陈家伟, 等. 变速风力发电机组的模糊-单神经元PID控制[J]. 中国电机工程学报, 2011, 31(27):88-94.
[3] 刘乐星, 马克雄, 毛宗源. 基于遗传算法的发电机线性最优励磁控制研究[J]. 三峡大学学报(自然科学版), 2001(03):216-219+238.
[4] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002(03):13-18.
[5] 王超, 王刚. 非线性特性在船舶电力系统中的研究及仿真[J]. 舰船科学技术, 2015, 37(01):161-164.
[6] 周左晗, 施伟锋. 船舶无刷发电机励磁控制系统的数字仿真[J]. 计算机仿真, 2013, 06:152-156.
[7] IRMAK E, GÜLER N, ERSAN M, "PI controlled solar energy supported static excitation system desing and simulation for synchronous generators"[C]//2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, United Kingdom, 2016, pp. 1024-1028.
[8] NUZZO S, GALEA M, GERADA C, et al. "An analytical and genetic-algorithm-based design tool for brushless excitation systems of low-medium rated synchronous generators"[C]//201619th International Conference on Electrical Machines and Systems (ICEMS), Chiba, 2016, pp. 1-7.
[9] 张灵杰, 孙建波, 郭晨. 船舶电力系统暂态稳定性的混合分析法[J]. 船舶工程, 2015, 37(05):45-49.
[10] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(01):24-31.