舰炮无链供弹系统对保障舰炮稳定射击、有效拦截目标具有重要意义。为了提高舰炮无链供弹系统的可靠性,有必要分析舰炮在射击过程中供弹系统的动力学特性。文中基于刚柔耦合多体动力学理论, 采用一种三维实体造型、有限元分析与多体动力学分析理论相结合的刚柔耦合动力学仿真分析方法,分别建立刚柔耦合动力学模型和刚体动力学模型,得到了不同动力学模型下供弹系统启动和稳定阶段阻力矩的大小,并与试验结果对比。研究结果表明:在启动和稳定运转阶段,刚柔耦合模型阻力矩相比于刚体模型更接近于现场试验结果,且柔性体的变形量与现场实测基本一致;刚体模型仿真结果在稳定运转阶段阻力矩与真实结果相差很大。因此对供弹系统建立刚柔耦合模型的动力学仿真,相比于刚体动力学仿真模型更能准确得到供弹系统相关的动力学特性。
Naval-gun non-chain feeding system has great significance to protect the stability of the naval gun and intercept the target effectively. In order to improve the reliability of the non-chain feeding system, it is necessary to analyze the dynamic characteristics of the feeding system during the shooting process. Based on the theory of rigid-flexible coupling multi-body dynamics, the author adopts a rigid-flexible coupling simulation method based on the three-dimensional solid modeling, finite element analysis and multi-body dynamics analysis theory. The author established the rigid-flexible coupling dynamics model and the rigid body dynamics model, the resistance torque of the start and stable phases of the feeding system under different dynamic models are obtained and compared with the experimental results. The results show that the resistance torque of the rigid-flexible coupling model is closer to the real test results than the rigid body model in the start and stable phase, and the deformation of the flexible body is basically the same as that of the real test results; but the simulation results of the rigid body model are very different from the real results in the stable phase. Therefore, the dynamic simulation of the rigid-flexible coupling model for the feeding system is more accurate than the rigid body dynamics simulation model.
2018,40(12): 150-154 收稿日期:2018-04-10
DOI:10.3404/j.issn.1672-7649.2018.12.031
分类号:TP391.9;V47
基金项目:国防基础科研基金;海军武器装备预研项目
作者简介:李利(1994-),男,硕士研究生,专业方向为火炮自动武器与弹药工程
参考文献:
[1] 李豪杰, 张合, 李珂翔, 等. 考虑铰链间隙的水面并联稳定平台动力学分析[J]. 兵工学报, 2017, 38(1):129-134 LI Haojie, ZHANG He, LI Ke-xiang, et al. Dynamic analysis of offshore parallel stabilized platform in considering joint clearance[J]. Acta Armamentarii, 2017, 38(1):129-134
[2] SHARF I. Geometric stiffening in multibody dynamics for-mulations[J]. Journal of Guidance Control and Dynamics, 1995, 18(4):882-890
[3] 金国光, 贠今天, 杨世明. 柔性变胞机构动力学建模及仿真研究[J]. 华中科技大学学报:自然科学版, 2008, 36(11):76-79
[4] 王瑞林, 李永建, 张军挪. 基于虚拟样机的轻武器建模技术及应用[M]. 北京:国防工业出版社, 2014.
[5] 荣吉利, 辛鹏飞, 诸葛迅, 等. 空间大型末端执行器柔性绳索捕获动力学研究[J]. 兵工学报, 2016, 37(9):1730-1737
[6] 张劲夫, 许庆余, 张凌. 具有粘性摩擦的弹性曲柄滑块机构的动力学建模及计算[J]. 西安交通大学学报, 2000, 34(11):86-89
[7] 王毅, 吴立言, 刘更. 机械系统的刚-柔耦合模型建模方法研究[J]. 系统仿真学报, 2007, 19(20):4708-4710
[8] 胡胜海, 郭春阳, 余伟, 等. 基于变胞原理的舰炮装填机构刚-柔耦合动力学建模及误差分析[J]. 兵工学报, 2015, 36(08):1399-1403
[9] 王悦, 刘宏, 彭波, 等. 基于刚柔耦合的新型航天飞行器舱门锁紧机构捕获域研究[J]. 西北工业大学学报, 2016, 34(5):908-912
[10] 刘铸永. 刚-柔耦合动力学建模理论与仿真技术研究[D]. 上海:上海交通大学, 2008:21-68.
[11] 陈思佳, 章定国. 带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析[J]. 南京理工大学学报, 2012, 36(1):182-188