水动力系数计算是研究潜体操纵性的基础,随着潜艇、潜水器等的迅猛发展,日益成为国内外学者关注的热点。为了更好地对其进行研究和学习,对近年来国内外潜体水动力系数计算的研究结果进行综述。对模型试验、数值计算、理论计算3种求取潜体水动力系数方法的研究成果进行汇总,结合具体算例采用数值计算方法获得航行器的水动力系数,总结不同计算方法的优缺点,汇总重要的定性研究结论,提出需要进一步研究的问题。
The calculation of underwater vehicles' hydrodynamic coefficients is a key step in the study of its maneuverability. With the rapid development of submarines and autonomous underwater vehicles (AUV), it has always been a hot topic for domestic and abroad scholars. The research development of hydrodynamic coefficients' calculation method is reviewed for carrying out studies and researches conveniently. This paper mainly summarizes the research results on calculation of the hydrodynamic coefficients of underwater vehicles in three different calculation methods according to the hydrodynamic experiment, analytical and semi-empirical methods and the numerical calculation. The numerical calculation method is used to obtain the hydrodynamic coefficients of the AUV. Furthermore, advantages and disadvantages of different calculation methods are summarized, significant achievements are summarized, and several issues are identified for the future study.
2019,41(1): 1-6 收稿日期:2018-03-12
DOI:10.3404/j.issn.1672-7649.2019.01.001
分类号:U661.1
基金项目:威海市技术发展计划资助项目(000150501)
作者简介:董苗苗(1993-),女,硕士研究生,研究方向为水下航行器操纵性预报
参考文献:
[1] 徐玉如, 苏玉民, 庞永杰. 海洋空间智能无人运载器技术发展展望[J]. 中国舰船研究, 2006, 1(3):1-4 XU Yu-ru, SU Yu-min, PANG Yong-jie. Expectation of the development in the technology on ocean space intelligent unmanned vehicles[J]. Naval Science and Technology, 2006, 1(3):1-4
[2] 张赫, 庞永杰, 李晔. 潜水器水动力系数计算方法研究[J]. 武汉理工大学学报, 2011, 35(1):15-18 ZHANG He, PANG Yong-jie, LI Ye. Study of AUV's hydrodynamic coefficients calculation methods[J]. Journal of Wuhan University of Technology(Transportation Science& Engineering), 2011, 35(1):15-18
[3] 张晓频. 多功能潜水器操纵性能与运动仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2009.
[4] MANSOORZADEH S, JAVANMARD E. An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods[J]. Journal of Fluids & Structures, 2014, 51(1):161-171
[5] GALA F L, DUBBIOSO G, ORTOLANI F, et al. Preliminary evaluation of control and manoeuvring qualities for the AUTODROP-UUV vehicle[J]. Ifac Proceedings Volumes, 2012, 45(27):132-137
[6] 李刚. 穿梭潜器水动力特性的数值模拟和试验研究[D]. 哈尔滨:哈尔滨工程大学, 2011.
[7] AVILA J P J, ADAMOWSKI J C. Experimental evaluation of the hydrodynamic coefficients of a ROV through Morison's equation[J]. Ocean Engineering, 2011, 38(17):2162-2170
[8] XU F, ZOU Z J, YIN J C, et al. Identification modeling of underwater vehicles' nonlinear dynamics based on support vector machines[J]. Ocean Engineering, 2013, 67:68-76
[9] 赵金鑫. 某潜器水动力性能计算及运动仿真[D]. 哈尔滨:哈尔滨工程大学, 2011.
[10] 庞永杰, 王庆云, 李伟坡. 螺旋桨及其运行对潜艇操纵性水动力影响的模型试验研究[J]. 哈尔滨工程大学学报, 2017, 38(1):109-114 PANG Yong-jie, WANG Qing-yun, LI Wei-po. Model test study of influence of propeller and its rotation on hydrodynamics of submarine maneuverability[J]. Journal of Harbin Engineering University, 2017, 38(1):109-114
[11] 张赫, 庞永杰, 李晔. 基于FLUENT软件模拟平面运动机构试验[J]. 系统仿真学报, 2010, 22(3):566-569 ZHANG He, PANG Yong-jie, LI Ye. Numeral simulation of hydrodynamic tests using FLUENT[J]. Journal of System Simulation, 2010, 22(3):566-569
[12] 张玲, 谢殿伟. 水下机器人惯性类水动力计算研究[J]. 设计与研究, 2004(3):8-10 ZHANG Ling, XIE Dian-wei. Calculation and study on inertial hydrodynamics force of underwater robot[J]. Ship & Boat, 2004(3):8-10
[13] 李刚, 段文洋, 郭志彬. 复杂构型潜器附加质量的研究[J]. 哈尔滨工业大学学报, 2010, 42(7):1145-1148 LI Gang, DUAN Wen-yang, GUO Zhi-bin. Added mass of submerged vehicles with complex shape[J]. Journal of Harbin Engineering University, 2010, 42(7):1145-1148
[14] 潘子英, 吴宝山, 沈泓萃. CFD在潜艇操纵性水动力工程预报中的应用研究[J]. 船舶力学, 2004, 8(5):42-51 PAN Zi-ying, WU Bao-shan, SHEN Hong-cui. Research of CFD application in engineering estimation of submarine maneuverability hydrodynamic forces[J]. Journal of Ship Mechanics, 2004, 8(5):42-51
[15] 詹成胜, 刘祖源, 程细得. 潜艇水动力系数数值计算[J]. 船海工程, 2018, 37(5):1-44 ZHAN Cheng-sheng, LIU Zu-yuan, CHENG Xi-de. Numerical calculation of the submarine hydrodynamic coefficients[J]. Ship&Ocean Engineering, 2018, 37(5):1-44
[16] 柏铁朝, 梁中刚, 周轶美, 等. 潜艇操纵性水动力数值计算中湍流模式的比较与运用[J]. 中国舰船研究, 2010, 5(2):22-28 BAI Tie-chao, LIANG Zhong-gang, ZHOU Yi-mei, et al. Comparison and application of turbulence modes in submarine maneuvering hydrodynamic forces computation[J]. Chinese Journal of Ship Research, 2010, 5(2):22-28
[17] 曹留帅, 朱军, 黄昆仑, 等. 全附体潜艇模型回转运动流场数值模拟[J]. 海军工程大学学报, 2015, 27(4):17-20 CAO Liu-shuai, ZHU Jun, HUANG Kun-lun, et al. Numerical simulation of fully appended submarine model in steady turn[J]. Jounarnal of Naval University of Engineering, 2015, 27(4):17-20
[18] 卢锦国, 梁中刚, 周轶美, 等. 湍流模型及网格分布对水下航行体回转水动力数值计算影响研究[C]//中国cae工程分析技术年会暨2011全国计算机辅助工程. 2011. LU Jin-guo, LIANG Zhong-gang, ZHOU Yi-mei, et al. Numiereal calculation of forces and moments on submerge body in turning motion[C]//China CAE Engineering Analysis Technology Annual Conference and 2011 National Computer Aided Engineering. 2011.
[19] XIAO C, LIU R, XU K, et al. Simulation for submarine rotating-arm tests[J]. Journal of Jiangsu University of Science & Technology, 2014
[20] 邓峰, 戴余良, 陈志法, 等. 基于滑移网格的潜艇旋臂试验数值模拟[J]. 指挥控制与仿真, 2016(1):122-126 DENG Feng, DAI Yu-liang, CHEN Zhi-fa, et al. Sliding mesh based on numerical simulation of rotating arms tests for submarines[J]. Command Control & Simulation, 2016(1):122-126
[21] 林兆伟, 孟生, 殷洪, 等. 潜器操纵性水动力系数的数值预报方法[J]. 中国造船, 2016, 57(1):59-68 LIN Zhao-wei, MENG Sheng, YIN Hong, et al. Numerical approaches for predicting hydrodynamic coefficients of submersible[J]. Ship Building of China, 2016, 57(1):59-68
[22] 黄昆仑, 庞永杰, 苏玉民, 等. 潜器线性水动力系数计算方法研究[J]. 船舶力学, 2008, 12(5):697-705 HUANG Kun-lun, PANG Yong-jie, SU Yu-min, et al. Research on linearity hydrodynamic coefficients calculation method of submarine vehicle[J]. Journal of Ship Mechanics, 2008, 12(5):697-705
[23] 庞永杰, 杨路春, 李宏伟, 等. 潜体水动力导数的CFD计算方法研究[J]. 哈尔滨工程大学学报, 2009, 30(8):903-908 PANG Yong-jie, YANG Lu-chun, LI Hong-wei, et al. Approaches for predicting hydrodynamic characteristics of submarine objects[J]. Journal of Harbin Engineering University, 2009, 30(8):903-908
[24] ZHANG H, XU Y R, CAI H P. Using CFD software to calculate hydrodynamic coefficients[J]. Journal of Marine Science & Application, 2010, 9(2):149-155
[25] 寇冠元, 殷洪, 林兆伟, 等. 基于数值水池的潜艇横摇运动仿真[J]. 舰船科学技术, 2012, 34(3):26-31 KOU Guan-yuan, YIN Hong, LIN Zhao-wei, et al. Simulation of submarine rolling based on the numerical tank[J]. Ship Science and Technology, 2012, 34(3):26-31
[26] 孙铭泽, 王永生, 张志宏, 等. 基于网格变形技术的全附体潜艇操纵性计算[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(2):46-56 SUN Ze-ming, WANG Yong-sheng, ZHANG Zhi-hong, et al. Simulation of submarine rolling based on the numerical tank[J]. Ship Science and Technology, 2013, 37(2):46-56
[27] RACINE B, PATERSON E. CFD-Based method for simulation of marine-vehicle maneuvering[C]//Aiaa Fluid Dynamics Conference and Exhibit. 2013:42-47.
[28] 胡志强, 衣瑞文, 林扬, 等. 基于随体坐标系的水下机器人水动力数值计算方法[J]. 科学通报, 2013, 58(增刊Ⅱ):55-66 HU Zhi-qiang, YI Rui-wen, LIN Yang, et al. Numerical calculation methods for hydrodynamics of unmanned underwater vehicles based on body-fixed coordinate frames[J]. China Science Press, 2013, 58(Suppl. Ⅱ):55-66
[29] CAO Liu-shuai, ZHU Jun, WANG Wen-bin. Numerical Investigation of Submarine Hydrodynamics and Flow Field in Steady Turn[J]. China Ocean Engineering, 2016, 30(1):57-68
[30] ZAGHI S, MASCIO A D, BROGLIA R, et al. Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine[J]. Mathematics & Computers in Simulation, 2015, 116(C):75-88
[31] WU X, WANG Y, HUANG C, et al. An effective CFD approach for marine-vehicle maneuvering simulation based on the hybrid reference frames method[J]. Ocean Engineering, 2015(109):83-92