针对水下机器人-机械手一体系统需要快速、准确实现预定轨迹跟踪以实现作业的要求,提出一种基于指数趋近律的滑模变结构控制方法,以期提高系统的响应速度与控制精度,并减小系统抖振,实现对系统运动轨迹的控制。为此本文首先建立水下机器人-机械手系统整体动力学模型,并基于指数趋近律和滑模变结构控制建立系统的控制器,通过李雅普诺夫稳定性理论对控制系统的稳定性进行验证。然后在Matlab环境中对水下机器人-机械手系统进行轨迹跟踪控制仿真。仿真结果表明,建立的滑模控制系统响应快,控制误差小,能够有效地实现水下机器人-机械手系统的运动轨迹控制。
For the underwater vehicle-manipulator system, it is necessary to reach the predetermined trajectory quickly and accurately, so as to implement tasks. A sliding mode variable structure control method based on the exponential reaching law is proposed to improve the response speed and control accuracy of the underwater vehicle-manipulator system as well as reduce high frequency chattering of the system. Firstly, based on the dynamic model of underwater vehicle-manipulator system, a sliding mode controller combing exponential reaching law and sliding mode variable structure control method is established. Then the stability of the controller is verified with Lyapunov theory. After that, the trajectory tracking control simulation of the system is performed in Matlab environment. The simulation results show that the proposed sliding mode control system has a faster response and smaller control errors. Moreover, it can realize the trajectory control of the underwater vehicle-manipulator system effectively.
2019,41(1): 54-58 收稿日期:2018-06-28
DOI:10.3404/j.issn.1672-7649.2019.01.010
分类号:TP242.3
基金项目:国家自然科学基金资助项目(61603277);“十三五”装备预研共用技术资助项目(41412050101);上海航天科技创新基金资助项目(SAST 2016017);“青年千人计划”项目;上海市基础重大资助项目(15JC1403300);中央高校基本科研业务费资助项目
作者简介:汤奇荣(1982-),男,教授,主要从事机器人与机电一体相关技术研究。
参考文献:
[1] 余明刚, 张旭, 陈宗恒. 自治水下机器人技术综述[J]. 机电工程技术, 2017, 46(8):155-157 YU Ming-gang, ZHANG Xu, CHEN Zong-heng. Summary of autonomous underwater vehicle (AUV) technology[J]. Electromechanical Technology, 2017, 46(8):155-157
[2] GIACOMO M, SONG C, JUNKU YUH. Underwater autonomous manipulator for intervention missions AUVs[J]. Ocean Engineering, 2009, 36(8):15-23
[3] MAKOTO I, KAZUO I. Control of an underwater manipulator mounted for an AUV considering dynamic manipulability[J]. International Congress Series, 2006, 46(2):269-272
[4] 张奇峰, 张艾群. 自治水下机器人机械手系统协调运动研究[J]. 海洋工程, 2006, 24(3):79-84 ZHANG Qi-feng, ZHANG Ai-qun. Research on coordinated motion of an autonomous underwater vehicle-manipulator system[J]. The Ocean Engineering, 2006, 24(3):79-84
[5] ZHANG Ming-jun, CHU Zhen-zhong. Adaptive sliding mode control based on local recurrent neural networks for underwater robot[J]. Ocean Engineering, 2012, 45(2):56-62
[6] 张文辉, 齐乃明, 尹洪亮. 基于滑模变结构的空间机器人神经网络跟踪控制[J]. 控制理论与应用, 2011, 28(9):1141-1144 ZHANG Wen-hui, QI Nai-ming, YIN Hong-liang. Neural-network tracking control of space robot based on sliding mode variable structure[J]. Control Theory and Applications, 2011, 28(9):1141-1144
[7] DONGHEE KIM, HYEUNG-S CHOI, KIM J-Y, et al. Trajectorygeneration and sliding-mode controller design of an underwater vehicle-manipulator system with redundancy[J]. International Journal of Plant Engineering and Management, 2015, 16(7):1561-1570
[8] XU Bin, PANDIAN S, PETRY F. A sliding mode fuzzy controller for underwater vehicle-manipulator systems[C]//Annual Meeting of the North American Fuzzy Information Processing Society. Ann Arbor, Michigan, USA, 2005:181-186.
[9] TAIRA Y, OYA M, SAGARA S. Adaptive control of underwater vehicle-manipulator systems using radial basis function networks[C]//The 17th International Symposium on Artificial Life and Robotics, Oita, Japan, 2012:123-129.
[10] 陈巍, 魏延辉, 曾建辉, 等. 水下机器人-机械手系统控制方法综述[J]. 重庆理工大学学报(自然科学), 2015, 29(8):116-123 CHEN Wei, WEI Yan-hui, ZENG Jian-hui, et al. Review of underwater vehicle-manipulator system control method[J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(8):116-123
[11] 孙巧梅, 陈金国, 余万. 基于模糊自适应滑模方法的AUV轨迹跟踪控制[J]. 舰船科学技术, 2017, 39(12):53-58 SUN Qiao-mei, CHEN Jin-guo, YU Wan. Trajectory tracking control of autonomous underwater vehicles based on fuzzy adaptive sliding mode method[J]. Ship Science and Technology, 2017, 39(12):53-58