本文提出一种自治水下航行器(Autonomous Underwater Vehicles,AUV)三维轨迹跟踪控制算法。将AUV在三维空间的运动通过反演法和变结构滑模控制律设计出AUV航迹跟踪控制律,通过Lyapunov稳定性理论分析了系统的稳定性。在同时考虑加入外界干扰的条件下,使其控制效果在3个坐标轴上都能够达到稳定并且有平滑连续的输出结果,对外界干扰有较好的抑制作用。仿真结果表明了所提控制律的有效性。
A control algorithm is proposed for Autonomous Underwater Vehicles three-dimensional trajectory-tracking in this paper. The AUV path tracking controller is designed through the backstepping and variable structure sliding mode control law, considering the movement of AUV in three-dimensional space. The stability of the control system is analyzed using Lyapunov stability theory. As for environment disturbances, the proposed approach can achieve stability on three axes at the same time with smooth continuous outputs and the ability of restraining interference is enhanced. The simulation results show the effectiveness of the proposed control law.
2019,41(1): 66-70 收稿日期:2017-07-12
DOI:10.3404/j.issn.1672-7649.2019.01.012
分类号:U661.33
基金项目:水电机械设备设计与维护湖北省重点实验室资助项目(2016KJX16)
作者简介:孙巧梅(1983-),女,博士,讲师,主要从事船舶运动控制方向的研究
参考文献:
[1] 张利军, 齐雪, 赵杰梅, 等. 垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J]. 控制理论与应用, 2012, 29(10):1371-1376
[2] 俞建成, 张艾群, 王晓辉, 等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8):840-846
[3] LEE K W, KEUM W, SINGH S N, et al. Multi input submarine control via L1 adaptive feedback despite uncertainties[J]. Journal of System and Control Engineers, 2014, 228(5):330-347
[4] 朱大奇, 杨蕊蕊. 生物启发神经动力学模型的自治水下机器人反演跟踪控制[J]. 控制理论与应用, 2012, 29(10):1309-1316
[5] 周超, 曹志强, 王硕. 微小型仿生机器鱼设计与实时路径规划[J]. 自动化学报, 2008, 34(7):772-777
[6] 胡志强, 周焕银, 林扬, 等. 基于在线自优化PID算法的USV系统航向控制[J]. 机器人, 2013, 35(3):263-268
[7] BAGHERI A, MOGHADDAM J J. Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle[J]. Neurocomputing, 2009, 72(8):1934-1950
[8] WALLACE M B, MAX S D, EDWIN K. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller[J]. Robotics and Autonomous Systems, 2008, 56(8):670-677
[9] 魏延辉, 周卫祥, 贾献强, 等. AUV模型解耦水平运动多控制器联合控制[J]. 华中科技大学学报(自然科学版), 2016, 44(4):37-42
[10] CONTE G, DE CAPUA G P, SCARADOZZI D. Designing the NGC system of a small ASV for tracking underwater targets[J]. Robotics and Autonomous Systems, 76(2016) 46-57.
[11] ZOOL H I, MOHDB M M, VINA W E, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 111(2016) 155-165.
[12] GAO Fu-dong, PAN Cun-yun, HAN Yan-yan, et al. Nonliear traiectory tracking control of a new autonomous underwater vehicle in complex sea conditions[J]. Journal of Central South University, 2012, 19(7):1859-1868
[13] HNAGIL J, MINSUNG K, SON CHEOL Y. Second order sliding mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J]. Nonlinear Dynamics, 2014, 78(1):183-196
[14] 贾鹤鸣, 张利军, 齐雪, 等. 基于神经网络的水下机器人三维航迹跟踪控制[J]. 控制理论与应用, 2012, 29(7):877-883
[15] LIU Yan-cheng, LIU Si-yuan, WANG Ning. Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics[J]. Neurocomputing, 2016, 196:1-13.
[16] JON E R, ASGEIR J S. Model-based output feedback control of slender-body underactuated AUVs:theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5):930-946
[17] LIONEL L, BRUNO J. Robust nonlinear path-following control of AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2):89-102