针对深水吊缆非线性运动特性,基于弹性波理论建立了吊缆的动态模型,推导出吊缆的非线性运动方程,采用有限差分方法进行求解,与文献的试验值比较,结果吻合较好,验证了求解方法的准确性和可靠性;以谐波运动作为初始激励,计算不同水深时的吊载垂向运动响应并进行频谱分析,结果表明吊载的垂向运动响应时历为明显的非线性运动;同时给出了缆长4 500 m和3 000 m吊载处的垂向位移的计算结果,发现随着激励周期增加,3 000 m时吊载处的垂向位移幅值要大于4 500 m,且相差程度越来越大。
On the nonlinear deepwater hoisting cable movement characteristics,the hoisting rope of the nonlinear equations of motion were derived based on the elastic wave theory established the dynamic model of the lifting rope to solve the finite difference method. Comparing the test data to found that good agreement with the result, the accuracy and reliability of the method was verified. As the initial motivation to harmonic movement,the different water depths of crane load vertical motion response was calculated and the spectrum analysis was carried on,and the result show that hanging vertical motion response of the load is obvious nonlinear movement. Further more, the load calculation results of the vertical displacement when the length of cable is 4 500 and 3 000 was given, and it show that With the increase of incentive period, 3 000 m of crane load in vertical displacement amplitude is greater than 4 500 m, and the difference degree is bigger.
2019,41(1): 85-91 收稿日期:2017-10-08
DOI:10.3404/j.issn.1672-7649.2019.01.016
分类号:U661
基金项目:重庆市教委科技资助项目(KJ1600517);国家内河航道整治工程技术研究中心暨水利水运工程教育部重点实验室开放基金资助项目(SLK2016B05);重庆特种船舶数字设计制造工程研究中心开放基金资助项目(201607)
作者简介:赵藤(1985-),男,博士研究生,主要从事船舶与海洋工程性能研究
参考文献:
[1] 曾一非.海洋工程环境[M].上海:上海交通大学出版社.2007年.
[2] 李润培, 谢永和, 舒志. 深海平台技术的研究现状与发展趋势[J]. 中国海洋平台, 2003, 18(3):1-5 LI Run-pei, XIE Yong-he, SHU Zhi. Research status and development trend of deep-sea platform technology[J]. China Offshore Platform, 2003, 18(3):1-5
[3] 苏斌, 冯连勇, 王思聪, 等. 世界海洋石油工业现状和发展趋势[J]. 中国石油企业, 2006, 2(2):138-141 SU Bin, FENG Liang-yong, WANG Si-cong, et al. The current situation and development trend of the world's offshore oil industry[J]. Petro China Enterprise, 2006, 2(2):138-141
[4] 缪国平, 刘应中.挠性部件力学导论[M]. 上海:上海交通大学出版社. 1995.
[5] GAULT A J. COX W R. Method for predicting geometry and loading distribution in an anchor chain from a single point mooring buoy to a buried anchorage[C]//OTC, 1973(1):309-318.
[6] WEBSTER W C. Mooring induced damping[J]. Ocean Engineering, 1995, 22:571-591
[7] YANG Min-dong, TENG Bin. Static and dynamic analysis of mooring lines by nonlinear finite element method[J]. China Ocean Engineering, 2010, 24(3):417-430
[8] 陈雯,窦义粟. 世界海洋工程产业发展现状分析[J]. 中国水运, 2007, 7(8):190-200 CHEN Wen, DOU Yi-su. Analysis of the current situation of the world's ocean engineering industry[J]. China Water Transport, 2007, 7(8):190-200
[9] 陶永宏. 我国海洋工程发展现状[J]. 中外船舶科技, 2009(3):6-9 TAO Yong-hong. China's marine engineering development status[J]. Shipbuilding Science and Technology, 2009(3):6-9
[10] M. Freely propagating waves in elastic cables[J]. Journal of Sound and Vibration, 1996, 196(2):189-202
[11] MAHAMMAD Behbahan, Nejad, Wave propagation in elastic cables with and without fluid interaction[D], Doctor Degree, the University of Michigan, 1997.
[12] 吴开塔,ROV被动式升沉补偿系统理论及试验研究[D].上海:上海交通大学,2011.
[13] 袁鑫.系泊缆索动力分析数值方法研究[D].哈尔滨:哈尔滨工程大学.2010.
[14] 陆金甫,关冶.偏微分方程数值解法[M].北京:清华大学出版社, 2004.
[15] 李荣画,冯果忱.偏微分方程数值解法[M].北京:高等教育出版社, 1996.
[16] RICHARD Haberman, 郇中丹, 李援南等译. 实用偏微分方程[M]. 北京:机械工业出版社, 2007. 2, S2.
[17] PETTER Andreas Berthelsen, Dynamic response analysis of a truss spar in waves[J].Newcastle;University Of Newcastle, 2000.
[18] H. Analytical solution on the dragged surge vibration of tension leg platforms (TLPS) with wave large body and small body multi-interactions[J]. Journal of Sound and Vibration, 2001, 248(3):533-556
[19] CHATJIGEORGION,L. Comparative evaluation of numerical schemes for 2D mooring dynamics[J]. International journal of offshore and polar engineering, 2010, 10(4):301-309