作为舰船保障系统的一部分,舰船空调的强化换热及制冷剂替代工作具有重要意义。本文通过数值模拟,对外径为5 mm、长为1 m的水平微肋管在R22和R410A进行沸腾换热特性研究。研究表明:采用Euler多相流模型及RPI沸腾换热模型计算结果基本能够反映直肋管管内沸腾过程中的换热特性,与文献中实验结果差距不大;相同条件下R410A的换热特性要比R22高,约是1.3~1.4倍,在舰船空调换热器进行制冷工质替换及设计优化过程要予以考虑。
Improvements in heat transfer enhancement and refrigerant replacement is significant to ship air conditioning which is an important part of the ship guarantee system. In this paper a forced boiling heat transfer characters of refrigerant R22 and R410A in a 5 mm micro-fin tube has been numerically simulated with the application of thermal phase change RPI model in Ansys CFX. The simulation results agree well with experimental results. It is found that the heat transfer coefficient with R410A is about 1.3 to 1.4 times of that with R22.
2019,41(2): 85-88 收稿日期:2017-11-27
DOI:10.3404/j.issn.1672-7649.2019.02.017
分类号:TK124
作者简介:姜国宝(1987-),男,博士,工程师,现从事船舶大气环境空中系统研究
参考文献:
[1] FUJIE K, ITOH M, INNAMI T, et al. Heat transfer pipe. US patent 4, 044, 797, 1977[assigned to Hitachi, Ltd.]
[2] AKIO M, YUSUKE O. Condensation heat transfer of herringbone micro fin tubes[J]. International Journal of Thermal Science, 2002, 41:639-645
[3] DONGSOO J, HEUNGSEOK L, DONGSOO B, et al. Nucleate boiling heat transfer coefficients of flammable refrigerants on various enhanced tubes[J]. International Journal of Refrigeration, 2005, 28:451-455
[4] ZHANG Zhengguo, LI Qianxia, XU Tao, et al. Condensation heat transfer characteristics of zeotropic refrigerant mixture R407C on single, three-row petal-shaped finned tubes and helically baffled condenser[J]. Applied Thermal Engineering, 2012, 39:63-69
[5] LI Guan-qiu, WU Zan, LI Wei, et al. Experimental investigation of condensation in micro-fin tubes of different geometries[J]. Experimental Thermal and Fluid Science, 2012, 37:19-28
[6] KUO C. S., WANG. C.C. In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube[J]. International Journal of Heat and Mass Transfer, 1996, 39:2556-2569
[7] KUOC. S., WANG. C.C. Horizontal flow boiling of R22 and R407C in a 9.52 mm micro-fin/smooth tube[J]. Applied Thermal Engineering, 1996, 16:713-731
[8] LALLEMAND M., BRANESCU C., HABERSCHILL P. Local heat transfer coefficients during boiling of R22 and R407C in horizontal smooth and micro-fin tubes[J]. International Journal of Refrigeration, 2001, 24:57-72
[9] ADRIANA G, GIUSEPPE P V. Evaporation of refrigerants in a smooth horizontal tube:prediction of R22 and R507 heat transfer coefficients[J]. Applied Thermal Engineering, 2004, 24:2189-2206
[10] KIM Man-hoe, SHIN Joeng-seob. Evaporating heat transfer of R22 and R410A in horizontal smooth and micro-fin tubes[J]. International Journal of Refrigeration, 2005, 28:940-948
[11] SATO Y, SADATOMI M, SEKOGUCHI K. Momentum and heat transfer in two-phase bubble flow-theory[J]. International Journal of Multiphase Flow, 1981, 7(2):167-177
[12] KURUL N, PODOWSKI M. On the modeling of multi-dimensional effects in boiling channels[C]//Minneapolis. 1991.
[13] 袁培.板翅式换热器两相流分配器优化及锯齿型翅片传热特性的研究[D].西安:西安交通大学,2013. YUAN Pei. Research on the optimization for two-phase distributor of plate-fin heat exchanger and the heat transfer character of offset strip fin[D]. Xi'an, Xi'an Jiaotong University, 2013.
[14] 姜国宝.微肋管管内流动相变换热及阻力特性实验研究和数值模拟[D].西安:西安交通大学,2016. JIANG Guobao. Experimental and numerical study on the convective phase change heat transfer and pressure drop characteristics in micro-fin tubes[D]. Xi'an, Xi'an Jiaotong University, 2016.
[15] State Bureau of Quality Technical Supervision, Ministry of Health, SEPA in PRC. GB/T 18883-2002, Indoor air quality standard[S] Beijing:China Standards Press, 2002.
[16] China State Shipbuilding Industry Corporation. CB/T3774-996, Air conditioning, ventilation design conditions and calculation standard of Ship control[S].
[17] State Bureau of Quality Technical Supervision, China national standardization administration commission. GB/T 1880-2015, Air cleaner[S], Beijing:China Standards Press, 2015.
[18] ZHU Y X. Architectural Environment (4th edition)[M], Beijing:China Building Industry Press, 2016.
[19] QI M W, LI X F, HUANG H. Tracer gas method of using the body as CO2 source measurement method to explore the air changes in the dormitory[J]. building science, 2013, 29(6):52-57, 58
[20] HUANG S D, XIONG J Y, ZHANG YP. Comparative research between closed chamber C-history method and other methods for measuring characteristic parameters of building materials[J]. CIESC Journal, 2012, 63(S1):194-198