电磁轨道炮发射电磁炮弹时会对后坐部分产生电磁反作用力。电磁反作用力的存在会使后坐部分后坐。电磁轨道炮的后坐过程可分为2个运动时期。自由后坐运动时期可得出后坐部分的最大后坐速度和初始后坐行程。惯性运动时期得到的最大后坐运动行程是合理设计反后坐装置的直接依据。依据后坐微分方程对反后坐装置进行了设计研究,给出了0°和60°射角时反后坐装置的设计结果。对电磁轨道炮反后坐装置研究具有一定的参考价值。
Anti-electromagnetic-force is produced while projectile is launched in electromagnetic railgun. The existing force will make the recoil assemble move along the opposite direction of projectile. The recoil process can be regarded as two movement periods. Maximum velocity and original recoil displacement can be calculated from free recoil movement period. The maximum recoil displacement obtained from inertia recoil movement period is the direct basis to design the anti-recoil mechanism. According to the recoil differential equation, the results of 0° and 60° elevation were calculated. The research has some reference significance to study anti-recoil mechanism.
2019,41(2): 150-153 收稿日期:2018-03-18
DOI:10.3404/j.issn.1672-7649.2019.02.030
分类号:TJ391
作者简介:邱群先(1972-),男,硕士,研究员,主要从事舰炮技术研究
参考文献:
[1] 谢克瑜, 等. 电磁轨道发射系统后坐力研究及反后坐装置设计[J]. 弹道学报, 2014, 26(4):98-101
[2] 高树滋, 陈运生, 张月林, 等. 火炮反后坐装置设计[M]. 北京:兵器工业出版社1995.
[3] 中国国防科技信息网. 美军为电磁炮开发新型炮架, 2015. 8
[4] ZICLINSKI A E, PARKER J V. Demonstration of a hypervelocity mass-efficient integrated launch package[J]. IEEE Transactions on Magnetics, 2001, 37(1):347-352
[5] 石江波, 栗保明. 电磁轨道炮后坐过程研究[J]. 兵工学报, 2015, 36(2):227-233