径向滑动式中间轴承是船舶推进轴系主要支撑部件,其润滑性能将直接影响到整个推进系统的可靠性和传动效率,而润滑性能主要受滑油温度的影响。因此,开展中间轴承冷却性能强化研究对保障船舶推进轴系正常工作具有非常重要的意义。本文建立了中间轴承流固耦合传热数值模型,获得了最高转速工况下中间轴承主要部件及油池内滑油的温度场分布。通过与实验数据对比,验证了所建数值模型的精确性。在此基础上,基于Cu-润滑油纳米流体物性参数模型,分析了不同体积分数Cu-润滑油纳米流体对中间轴承冷却性能的影响。研究结果表明,随着纳米颗粒体积分数的增加,油池内壁面及冷却盘管外表面平均对流换热系数均显著增大,有效地增强了滑油的换热能力,中间轴承冷却性能得到了强化。
The radial sliding intermediate bearing serves as the main supporting part of the ship propulsion shaft, and the lubrication performance which depends on the working temperature of lubricating oil, will directly affect the reliability and transmission efficiency of entire ship propulsion system. Therefore, the research on the cooling performance of intermediate bearing is of great importance for ensuring the normal work of ship propulsion shafting. The fluid-solid interaction heat transfer model of intermediate bearing was built in this paper, the temperature of main components on intermediate bearing and lubrication oil in the oil pool were obtained under maximum rotating speed, and the accuracy of numerical model was verified by the comparison between the calculated and experimental values. Based on the thermophysical parameters corrected model of Cu-lubricating oil nanofluids, the influence from Cu-lubricating oil nanofluids under different volume fraction on the cooling performance of intermediate bearing was researched, and the simulation results indicate that the heat transfer coefficient on the inner wall of oil pool and the outer wall of cooling coil increase significantly with the increase of nanoparticle volume fraction, which improves the cooling performance of intermediate bearing effectively.
2019,41(3): 13-17 收稿日期:2018-04-20
DOI:10.3404/j.issn.1672-7649.2019.03.003
分类号:TH133
基金项目:国家重点基础研究发展计划资助项目(973计划)(2014CB046704);国家科技支撑计划资助项目(2014BAB13B01)
作者简介:何鲲(1994-),女,硕士研究生,主要从事动力机械及工程方向研究
参考文献:
[1] 林起崟, 魏正英. 高速滑动轴承流固耦合传热及流场分析[J]. 润滑与密封, 2010(10):28-32
[2] 章滔, 龚金科. 涡轮增压器水冷轴承体冷却性能仿真研究[J]. 汽车工程, 2014(3):383-388
[3] 杨帅, 周毅. 纳米流体作为柴油机冷却系传热介质的数值模拟[J]. 同济大学学报, 2010(2):285-289
[4] 周龙, 白敏丽. 纳米流体强化活塞组-气缸套传热的数值模拟研究[J]. 内燃机工程, 2011(12):74-80
[5] 王焕杰. 船用滑动轴承冷却性能数值仿真与实验研究[J]. 舰船科学技术, 2015, 37(12):59-62
[6] HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Journal of Applied Physics, 1962, l:187-191
[7] MURSHED S M S, LEONG K C, YANG C. Thermal conductivity of nanoparticle suspensions[J]. Applied Physics Letters, 2006, 78:90-93
[8] XUAN Yi-min, LI Qiang. Simulations of structure and thermal conductivity of nanofluids[J]. Engineering hermophysics, 2002, 23(2):206-205
[9] 李强. 纳米流体强化传热机理研究[D]. 南京:南京理工大学, 2004.
[10] 彭小飞, 俞小莉, 夏立峰. 低浓度纳米流体粘度变化规律试验[J]. 农业机械学报, 2007, 38(4):138-141
[11] WANG B X, ZHOU L P, PENG X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J]. International Journal of Heat and Mass Transfer, 2003, 46:2665-2672
[12] 宣益民, 李强. 纳米流体能量传递理论与应用[M]. 北京:科学出版社, 2010:132-140.