为了研究全附体尾流作用下多桨船尾部螺旋桨布局对其水动力性能的影响,本文以某四桨船舶为研究对象,对船体、螺旋桨以及舵、轴支架、轴包套、呆木等附体进行整体建模,通过改变船后螺旋桨的相对位置,采用CFD软件计算得到了在全附体尾流作用下不同的螺旋桨布局对螺旋桨水动力性能方面的影响差异。结果表明,外前桨的纵向移动对于前后桨的效率影响不大;外前桨的横向移动对内后桨的水动力性能影响较大,当前后桨横向距离为1倍螺旋桨直径时,内后桨的推力系数最大增加8.9%,扭矩系数最大增加5.9%,船后效率最大增加2.8%。计算结果对于工程应用具有一定的参考价值。
In order to take research on the effect of propeller layout on propeller hydrodynamic performance under the influence of the whole appendages, a four-propeller surface ship was studied and an integral mathematic model including hull、propellers and appendages was established. Under the influence of the whole appendages, the hydrodynamic performance of propellers is studied through CFD after changing the relative position of propellers. The result shows that propellers efficiency is not sensitive to longitudinal position change of the propellers but the outer propeller hydrodynamic performance sensitive to the transverse position change.When the transverse distance equals a propeller diameter, thrust coefficient of outer propeller improves by 8.9%, torsion coefficient by 5.9% and behind efficiency by 2.8%. The result possess a certain reference value to the engineering application.
2019,41(3): 18-23 收稿日期:2017-09-04
DOI:10.3404/j.issn.1672-7649.2019.03.004
分类号:U661
作者简介:袭鹏(1990-),男,硕士研究生,研究方向为船舶流体力学
参考文献:
[1] SIMONSEN C D. Rudder propeller and hull interaction by RANS[D]. Denmark:Technical University of Denmark, 2000:12-19.
[2] CHAO K Y. Numerical propulsion simulation for the KCS container ship[C]//Proceedings of CFD Workshop. Tokyo, 2005:85-105.
[3] PRAKASH M S, SUBRAMANIANV A. Simulation of propeller-hull interaction using ranse solver[J]. The International Journal of Ocean and Climate Systems, 2010, 1(3):189-208
[4] KIM J. RANS computations for KRISO container ship and VLCC tanker using the WAVIS code[C]//Proceedings of CFD Workshop. Tokyo, 2005:105-121.
[5] 吴召华. 基于体积力法的船桨舵粘性流场的数值研究[D]. 上海:上海交通大学, 2013.
[6] TAHAPAI Y. Comparison of free-surface capturing and tracking approaches in application to modern container ship and prognoses for extension to self-propulsion simulator[C]//Proceedings of CFD Workshop. Tokyo, 2005:145-167.
[7] CHOU S K, CHAU S W, CHEN W C, et al. Computations of ship flow around commercial hull forms with free surface or propeller effect[C]//A Workshop on Numberical Ship Hydrodynamics Proceedings, Gothenburg, 2000.
[8] VISONNEAU M, DENG G B, QUEUTEY P. Computation of model and full scale flows around fully-appended ships with an unstructured RANSE solver[C]//26th Symposium on Naval Hydrodynamics. Rome:2006:119-132.
[9] ZHANG N, ZHANG S L. Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions[J]. Journal of Hydrodynamics, Ser.B, 2014, 26(1):50-56
[10] CHOI J E, MIN K S, KIM J H, et al. Resistance and propulsion characteristics of various commercial ships based on CFD results[J]. Ocean Engineering, 2010, 37(7):549-566
[11] HAN K J, LARSSON L, REGNSTR?M B. A numerical study of hull/propeller/rudder interaction[C]//Proceedings of 27th Symposium on Naval Hydrodynamics. Korea:2008:147-153.
[12] ROBERTO M, ANDREA D M. Simulation of the viscous flow around a propeller using a dynamic overlapping grid approach[C]//Proceedings of First International Symposium on Marine Propulsors. Norway:2009:32-49.
[13] 张志荣, 李百齐, 赵峰. 螺旋桨/船体粘性流场的整体数值求解[J]. 船舶力学, 2004, 8(5):19-26
[14] 沈兴荣, 冯学梅, 蔡荣泉. 大型集装箱船桨舵干扰粘性流场的数值计算研究[C]//2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议论文集. 银川, 2007:152-161.
[15] 王金宝, 蔡荣泉, 冯学梅. 计及自由面兴波和螺旋桨非定常旋转效应的集装箱船舶绕流场计算[J]. 水动力学研究与进展(A辑), 2007, 22(4):491-500
[16] 沈海龙, 郑丰勇, 苏玉民. 基于滑动网格技术的船体和螺旋桨非定常干扰研究[C]//第十四届中国海洋(岸)工程学术讨论会论文集. 呼和浩特, 2009:357-363.
[17] 沈海龙, 苏玉民. 船体黏性非均匀伴流场中螺旋桨非定常水动力性能预报研究[J]. 水动力学研究与进展(A辑), 2009, 24(2):232-241
[18] 付慧萍. 船桨整体及螺旋桨诱导的船体表面脉动压力计算[J]. 哈尔滨工程大学学报, 2009, 30(7):728-734
[19] 杨春蕾, 朱仁传, 缪国平, 等. 基于CFD方法的船/桨/舵干扰数值模拟[J]. 水动力学研究与进展(A辑), 2011, 26(6):667-673
[20] 覃新川, 黄胜, 常欣. 双桨两舵推进系统的水动力干扰研究[J]. 中国造船, 2008, 49(1):112-116
[21] 王展智, 熊鹰, 齐万江, 等. 船后桨的布局对螺旋桨水动力性能的影响[J]. 哈尔滨工程大学学报, 2012, 33(4):728-734
[22] 王展智, 熊鹰, 姜治芳. 舵的布置对螺旋桨水动力性能的影响[J]. 华中科技大学学报, 2012, 40(8):53-56