针对潜艇垂直面运动强非线性、耦合性和参数不确定的特点,为更好地实现对潜艇垂直面运动的控制,在Matlab环境下,基于垂直面线性操纵运动模型,考虑舵的动态响应,用首舵控制深度,尾舵控制纵倾角,采用新型趋近律设计滑模控制器并设计了基本的全维状态观测器;同时设计了常规的PID控制器并选取了最佳的PID控制参数,分别在3种情况下对2种控制器控制下的潜艇垂直面运动进行对比仿真。仿真结果表明,滑模控制器比PID控制器具有更好的控制性能和较强的鲁棒性,对实际潜艇的垂直面运动控制有一定的指导意义。
In order to achieve reliable vertical plane control of the submarine, we used the submarine vertical linear model under the environment of Matlab in this paper. Considering the rudder dynamic response, the improved sliding reaching control law was used to design the bow rudder controller and the stern rudder controller in the presence of model of nonlinearity and parameter uncertainty for submarine vertical motion. A full order state observer was designed. The bow and stern rudder controller was used to control the depth and the pitch respectively. Meanwhile, we designed the convention PID controller with best parameters, and employed Matlab simulation to realize the vertical plane control simulation with this two kinds of controllers of the submarine under three cases. The simulations were carried and results show that the sliding mode control has more excellent dynamic property and robustness compared with PID controller.
2019,41(3): 55-61 收稿日期:2017-04-24
DOI:10.3404/j.issn.1672-7649.2019.03.011
分类号:U661.3
基金项目:国家自然科学基金资助项目(41474061,41631072)
作者简介:陆斌杰(1992-),男,硕士研究生,研究方向为舰船操纵控制
参考文献:
[1] BABAOGLU, ORHAN K. Design an automatic control system for a submarine[R]. AD A-203925, 1988.
[2] HWANG, C. Design of robust controllers for manipulators[J]. J. National Cheng-Kung University, Sci. Eng. and Med. Section, 1991, 26:213-234
[3] HEALEY A. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles[J]. IEEE J. Oceanic Engin., 1993, 18(3):327-339
[4] HWANG Cheng-neng, YANG Joe-ming. Design of fuzzy nonlinear robust compensator and its application on submarines[J]. Journal of Marine Science and Technology, 2003, 11(2):83-95
[5] SONG F, SMITH S M. A comparison of sliding mode fuzzy controller and fuzzy sliding mode controller[C]//Fuzzy Information Processing Society, 2000. N A FIP S. 19th International Conference of the North American. 2000:480-484.
[6] NAI O L, CHRISTOPHER E, SARAHK S. On output tracking using dynamic output feedback discrete-time sliding-mode controllers[J]. IEEE Transactions on Automatic Control, 2007, 52(10):1975-1981
[7] CORRADINI M L, LEO T, ORLANDO G. Experinental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects[J]. Journal of Robotic Systems, 2002, 19(4):177-189
[8] KEUM W. Noncertainty-equ-ivalenmulti-variable adaptive control of submersibles using filtered signals[J]. Ocean Engineering, 2012, 53(7):98-110
[9] NAI O L, CHRISTOPHER E, SARAHK S. On output tracking using dynamic output feedback discrete-time sliding-mode controllers[J]. IEEE Transactions on Automatic Control, 2007, 52(10):1975-1981
[10] 牟军, 许汉珍. 潜艇操纵运动的变结构控制[J]. 华中理工大学学报, 1997, 25(6):33-37
[11] BRISTOL E H. On a new measure of interactions for multivariable process control[J]. IEEE Trans on Automatica Control, 1966, 11(1):133-134
[12] 罗凯, 李俊, 许汉珍. 潜艇近水面运动的解耦控制[J]. 海洋工程, 1999, 17(3):27-32
[13] 夏极, 胡大斌. 潜艇深度终端滑模控制技术[J]. 舰船科学技术, 2012, 34(2):55-62
[14] 徐超, 刘刚, 徐国华, 等. 基于泵控液压舵机的潜艇深度及纵倾控制[J]. 中国舰船研究, 2017, 12(2):116-123
[15] 潘慧, 佘莹莹, 唐正茂. 大攻角时的潜艇操纵控制技术[J]. 华中科技大学学报, 2012, 40(5):46-49
[16] KIM H. Expanded adaptive fuzzy sliding mode controller using expert knowledge and fuzzy basis function expansion for UFV depth control[J]. Ocean Engineering, 2007, 34(8-9):1080-1088
[17] 戴余良, 林俊兴, 苗海, 等. 潜艇空间机动的多变量滑模模糊控制[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(6):1040-1043
[18] 中国造船编辑部. 船舶动力学词典[M]. 上海:中国造船编辑部, 1981.
[19] Nomeneclature for Treating the Motion of a submerged Body Through a Fluid[R]. SNAME Technical and Research Bulletin 1-5, 1952.
[20] GERTERLER M, HAGEN R. Standard Equations of Motion for Submarine Simulation[R]. AD 653861, SNAME, 1967.
[21] 苏磊, 姚宏, 杜军, 等. 飞行器自适应反推Terminal滑模轨迹跟踪控制[J]. 系统工程与电子技术, 2014, 36(11):2249-2254
[22] 张合新, 范金锁, 孟飞, 等. 一种新型滑模控制双幂次趋近律[J]. 控制与决策, 2013, 28(2):289-293