基于核动力船舶反应堆舱的具体应用需求,研制了一款无源、小型化、模块化,具有良好耐高温和耐辐照特性的视频采集装置。它利用光纤阵列成像技术和基于稀疏表示的图像超分辨率重建算法来获取高质量的图像。通过主观质量评分法,将该装置与传统的电子摄像管摄像机、CCD/CMOS彩色/黑白摄像机进行一系列的耐高温、耐辐照的实验对比分析。不同环境下的实验结果表明,该视频采集工作稳定可靠,完全满足设计要求。另外,该装置还具有良好的泛化推广能力,稍加适应性设计,即可应用于其他类似的环境中。
According to the specific requirements in reactor room of nuclear power ship, a passive video acquisition device is developed based on optical fiber imaging technology and sparse super-resolution reconstruction model. It features small size, modular design, high-temperature resistance and strong radiation resistance. Based on Mean Opinion Score, adaptive capacity to high-temperature and strong radiation is well studied by comparison with TV camera, CCD/CMOS color/BW cameras. It is proved by experiments in different environments that this device can work well and completely meet design requirements. Additionally, this device is of good generalization ability and widely used in similar applications after adaptive design.
2019,41(3): 142-147 收稿日期:2017-07-28
DOI:10.3404/j.issn.1672-7649.2019.03.028
分类号:U665.2
基金项目:武汉市应用基础研究计划资助项目(WH232816)
作者简介:彭晓钧(1980-),男,博士,高级工程师,研究方向为舰船电子信号采集、处理和显控技术
参考文献:
[1] 彭晓钧, 谢仁富, 刘畅, 等. 船用视频图像增强装置的模块化设计[J]. 舰船科学技术, 2015, 37(3):105-108
[2] RJ DE, NP BAMES. Profiling atmospheric water vapor using a fiber laser lidar system[J]. Applied Optics, 2010, 49(4):562-567
[3] JHG ENDER. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5):1402-1414
[4] Y PENG, BL LU. Robust structured sparse representation via half-quadratic optimization for face recognition[J]. Multimedia Tools & Applications, 2016:1-22
[5] Y XU, L YU, H XU, et al. Vector sparse representation of color image using quaternion matrix analysis[J]. IEEE Transactions on Image Processing, 2015, 24(4):1315
[6] J YANG, Y ZHANG, NM NASRABADI, et al. Close the loop:Joint blind image restoration and recognition with sparse representation prior[J]. International Conference on Computer Vision, 2011, 24(4):770-777
[7] R PANDA, AR CHOWDHURY. Multi-view surveillance video summarization via joint embedding and sparse optimization[J]. IEEE Transactions on Multimedia, 2017, PP(99):1-1
[8] A REHMAN, M ROSTAMI, Z WANG, et al. SSIM-inspired image restoration using sparse representaiton[J]. Eurasip Journal on Advances in Signal Processing, 2012, 2012(1):16
[9] M YANG, L ZHANG, X FENG, et al. Sparse representation based Fisher discrimination dictionary learning for image classification[J]. International Journal of Computer Vision, 2014, 109(3):209-232
[10] J MAIRAL, M ELAD, G SAPIRO. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1):53
[11] H ZHANG, Y ZHANG, TS HUANG. Pose-robust face recognition via sparse representation[J]. Pattern Recognition, 2013, 46(5):1511-1521
[12] S AMAT, MA HEMANDEZ, N ROMERO. On a family of high-order iterative methods under gamma conditions with applications in denoising[J]. Numerische Mathematik, 2014, 127(2):201-221
[13] CR VOGEL, ME OMAN. Iterative methods for total variation denoising[J]. Siam Journal on Scientific Computing, 2007, 17(1):227-238
[14] DE SMITH, MT ZUBER, X SUN, et al. Tow-way laser link over interplanetary distance[J]. Science, 2006, 311(5757):53
[15] 彭晓钧, 李文甫. 船用OSD和双绞线传输系统的模块化设计[J]. 电视技术, 2012, 36(21):139-141
[16] R FERGUS, B SINGH, A HERTZMANN, et al. Removing camera shake form a single photograph[J]. Acm Siggraph, 2006, 25(3):787-794