本文结合水下潜器和水上船舶的水下矢量推进器,对具有不同矢量推进方式的螺旋桨矢量推进器和喷水矢量推进器进行分类整理和展开描述,概述部分矢量推进器的发展历史,阐明国内外各类不同方式的水下矢量推进器的工作原理及特点,最后总结了水下矢量推进器的发展趋势,对未来水下矢量推进器的设计和应用具有一定的参考价值。
The various forms of propeller vector thruster and waterjet vector thruster are sorted out and expanded especially for underwater vehicles and ships in this paper. The development history of part of the vector propulsion devices are summarized, and the operation mechanism and the features of the various types of vector propulsion devices are also illustrated in detail. Finally, the development trend of underwater vector propulsion devices is summarized. There is a certain reference value for future design and application of the underwater propulsion devices in this paper.
2019,41(4): 1-5 收稿日期:2018-07-04
DOI:10.3404/j.issn.1672-7649.2019.04.001
分类号:U664.1
基金项目:福建省海洋高新产业发展专项资金资助项目([2016]13号);福建省科技计划资助项目(2016H6022)
作者简介:张帅(1993-),男,硕士研究生,研究方向为船舶推进和减摇
参考文献:
[1] GONZALEZ L A. Design, modelling and control of an autonomous underwater vehicle[J]. Be Thesis, 2004
[2] LIU F, CUI W C, LI X Y. China's first deep manned submersible, JIAOLONG[J]. Science China Earth Sciences, 2010, 53(10):1407-1410
[3] 冯永军. 全方向推进器的水动力性能计算与试验设计研究[D]. 哈尔滨:哈尔滨工程大学, 2002. FENG Yong-jun. Study on the hydrodynamic characteristics and experimental design of variable vector propeller[D]. Harbin:Harbin Engineering University, 2002.
[4] STENOVEC G M. The Tandem propeller system[J]. Proceedings of Rov, 1987:110-116
[5] HUANG sheng, SHAO Xue-ming. Theoretical prediction of hydrodynamic characteristics of variable vector propeller[J]. Selected Papers of CSNAME, 1997, 12
[6] 任冬. 潜器变向轴全方位推进器控制系统[D]. 哈尔滨:哈尔滨工程大学, 2013. REN Dong. Research on variable direction axis variable vector propeller control system of underwater vehicle[D]. Harbin:Harbin Engineering University, 2013.
[7] 常欣. 潜器全方向推进器的研究[D]. 哈尔滨:哈尔滨工程大学, 2005. CHANG Xin. Research on the variable vector propeller of submersible[D]. Harbin:Harbin Engineering University, 2005.
[8] 徐海军, 潘存云. 柔性轴主动矢量推进装置螺旋桨轨迹求解与分析[J]. 机械传动, 2009, 3:4-10 XU Hai-jun, PAN Cun-yun. Solution and analysis of propeller path of flexible axis and active vector propulsion device[J]. Mechanical transmission, 2009, 3:4-10
[9] 魏东杰. 水下机器人并联式矢量推进器设计与研究[D]. 天津:天津大学, 2013. WEI Dong-jie. Design and research of the underwater robot vectored thruster with parallel mechanism[D]. Tianjin:Tianjin University, 2013.
[10] 方世鹏. 水下矢量推进螺旋桨装置设计与研究[D]. 长沙:国防科技大学, 2008. FANG Shi-peng. Research on submarine thrust-vectoring propulsion device[D]. Changsha:National Defense University, 2008.
[11] 陈振纬, 姜勇.用于潜水器的矢量螺旋桨推进器[P]. 中国专利:201710100742.5, 2017-07-14.
[12] UMEMOTO K, AIZAWA K, YOKOYAMA M, et al. Development of 1 MW-class HTS motor for podded ship propulsion system[C]//9th European Conference on Applied Superconductivity (EUCAS09), 2010, 234(3):1-7.
[13] LIU P, ISLAM M, VEITCH B. Unsteady hydromechanics of a steering podded propeller unit[J]. Ocean Engineering, 2009, 36(12-13):1003-1014
[14] 刘柱, 孟凡立. 船舶喷水推进技术发展[J]. 航海技术, 2004, 4:42-44 LIU Zhu, MENG Fan-li. The development on technology of water jet propulsion for ship[J]. Marine technology, 2004, 4:42-44
[15] 耿令波, 胡志强, 林杨, 等. 基于横向二次射流的水下推力矢量方法[J]. 航空动力学报, 2017, 32(8):1922-1932 GENG Ling-bo, HU Zhi-qiang, Lin Yang, et al. Underwater thrust vectoring method based on cross second flow[J]. Journal of Aerospace Power, 2017, 32(8):1922-1932
[16] BA Xin, LUO Xiao-hui, SHI Zhao-cun, et al. A vectored water jet propulsion method for autonomous underwater vehicles[J]. Ocean Engineering, 2013, 74(3), 133-140.
[17] 郑昆山. 基于喷水矢量推进的水下机器人设计与研究[D]. 长沙:国防科技大学, 2013. ZHENG Kun-shan. Design and research on vectorial waterjet propulsion based underwater vehicle[D]. Changsha:National Defense University, 2013.