研究了水下滑翔机在单个运动周期下躲避障碍物的路径规划问题,针对水下滑翔机运动特点,采用改进的人工势场法,规划出避障路径。首先,对传统的人工势场法进行改进,以克服局部极值与目标不可达问题,并引入速度势场函数,将静态势场转变为动态势场;然后,将水下滑翔机的运动特性及约束考虑进来,提出障碍物影响半径确定方法;之后,分析了定常海流对路径规划的影响。最后,以HUST-2号水下滑翔机为例在不同情况下进行仿真试验。结果表明,所用方法能使水下滑翔机成功避开水中静态与动态障碍物。
The problem of path planning for underwater glider avoiding obstacles in a single cycle is studied. An improved artificial potential field method is applied to generate an obstacle-avoiding path according to the motion characteristics of underwater glider. Firstly, to overcome the local minimum problem and destination unreachable problem, the traditional artificial potential field method is improved, and the velocity potential field function is introduced to transform the static potential field into dynamic potential field. Secondly, in terms of the motion characteristics and constraints of underwater glider, the method of determining the obstacle's influence radius is proposed. Subsequently, the constant force of current is added and its influence on path planning is analyzed. Finally, taking the underwater glider named HUST-2 as an example, simulation tests of path planning for underwater glider are conducted. The simulation results indicate that the underwater glider can avoid the static and dynamic obstacles by using the proposed method.
2019,41(4): 89-93 收稿日期:2018-04-17
DOI:10.3404/j.issn.1672-7649.2019.04.017
分类号:U675
作者简介:李沛伦(1994-),男,硕士研究生,研究方向为水下滑翔机路径规划
参考文献:
[1] 赵宝强. 基于粒子群改进算法的水下滑翔机路径优化[J]. 舰船科学技术, 2015, 37(8):140-145 ZHAO Bao-qiang. Underwater glider path optimization based on improved particle swarm algorithm[J]. Ship Science and Technology, 2015, 37(8):140-145
[2] ALVAREZ A, GARAU B, CAITI A. Combining networks of drifting profiling floats and gliders for adaptive sampling of the Ocean[C]//IEEE International Conference on Robotics and Automation. IEEE, 2007:157-162.
[3] FERNÁNDEZ-PERDOMO E, CABRERA-GÁMEZ J, HERNÁNDEZ-SOSA D, et al. Path planning for gliders using regional ocean models:application of pinzón path planner with the ESEOAT model and the RU27 trans-Atlantic flight data[C]//Oceans. IEEE, 2010:1-10.
[4] RAO D, WILLIAMS S B. Large-scale path planning for Underwater Gliders in ocean currents[J]. 2009.
[5] PEREIRA A A, BINNEY J, HOLLINGER G A, et al. Risk-aware path planning for autonomous underwater vehicles using predictive ocean models[J]. Journal of Field Robotics, 2013, 30(5):741-762
[6] 朱心科, 俞建成, 王晓辉. 能耗最优的水下滑翔机采样路径规划[J]. 机器人, 2011, 33(3):360-365 ZHU Xin-ke, YU Jian-cheng, WANG Xiao-hui. Sampling path planning of underwater glider for optimal energy consumption[J]. Robot, 2011, 33(3):360-365
[7] 张殿富, 刘福. 基于人工势场法的路径规划方法研究及展望[J]. 计算机工程与科学, 2013, 35(6):88-95
[8] 王奎民, 赵玉飞, 侯恕萍, 等. 一种改进人工势场的UUV动碍航物规避方法[J]. 智能系统学报, 2014(1):47-52
[9] KIM Y, GU D W, POSTLETHWAITE I. Real-time path planning with limited information for autonomous unmanned air vehicles[M]. Pergamon Press, Inc. 2008.
[10] 李惠光, 李旭锋, 邹立颖, 等. 动态环境下基于人工势场的足球机器人路径规划[J]. 国外电子测量技术, 2008, 27(5):27-30
[11] WU Z, ZHAO M, WANG Y, et al. Path Planning for Underwater Gliders with Motion Constraints[M]//Mechanism and Machine Science. Springer Singapore, 2017.
[12] 曹璟. 复杂环境下AUV路径规划方法研究[D]. 青岛:中国海洋大学, 2011.
[13] 顾建农, 张志宏, 王冲, 等. 水下滑翔机定常螺旋回转运动特性分析[J]. 中国造船, 2017(3):68-79 GU Jian-nong, ZHANG Zhi-hong, WANG Chong, et al. Analysis of steady spiral gyration motion characteristics of underwater glider[J]. Shipbuilding of China, 2017(3):68-79