为研究基于船冰碰撞的含凹陷损伤加筋板的极限强度,结合Derradji-Aouat各向同性三维失效准则和弹脆性破坏模式,提出基于线弹性的多表面失效海冰本构模型。利用Ls-dyna二次开发技术,编译生成相应的求解器。通过与球形冰撞击刚性板和柱形冰撞击船体舷侧板架仿真对比分析,验证了基于线弹性多表面失效海冰动力本构模型更加适用于船冰碰撞问题的研究。利用Ls-dyna模拟海冰与船体加筋板碰撞,并将含凹陷损伤加筋板模型导入Ansys中进行加筋板剩余极限强度的计算,得到考虑凹陷影响的加筋板极限强度。结果表明,凹陷对加筋板极限强度的衰减主要体现在凹陷面积,并且凹陷面积和深度对加筋板极限强度的衰减作用随着面积和深度的增加而逐步减弱。
In order to study the ultimate strength of stiffened panels with depression damage. Based on Derradji-Aouat isotropic three-dimensional failure criterion and elastic brittle failure mode, a multi surface failure sea ice constitutive model based on linear elasticity is proposed. Using Ls-dyna secondary development technology, compilethe corresponding solver. Through the comparison and analysis of the impact of a spherical ice on a rigid panel and a column ice on the ship's side plate, it is proved that the dynamic model of sea ice based on the linear elastic multi surface failure is more suitable for the study of the ship ice collision. Based on the linear elastic multi surface failure sea ice dynamic constitutive model, the Ls-dyna is used to simulate the collision between sea ice and the stiffened panels of the hull, and the residual ultimate strength of the stiffened panel is calculated by introducing the stiffened panel model containing the depression into the ANSYS, and the ultimate strength of the stiffened panel considering the depression is obtained. The results show that the attenuation of the ultimate strength of the stiffened panel is mainly reflected in the sag area, and the attenuation effect of the sag area and depth on the ultimate strength of the stiffened panel gradually decreases with the increase of the area and depth.
2019,41(5): 27-33 收稿日期:2018-06-19
DOI:10.3404/j.issn.1672-7649.2019.05.006
分类号:U663
基金项目:国家自然科学基金资助项目(51509113,51809126);江苏省自然科学基金资助项目(BK20181468);江苏省高校自然科学基金重大资助项目(16KJA580003)
作者简介:施兴华(1981-),男,副教授,研究方向为船舶与海洋工程可靠性和极限强度
参考文献:
[1] GAGNON R E. A numerical model of ice crushing using a foam analogue[J]. Cold Regions Science and Technology, 2011, 65(3):335-350
[2] DERRADJI-At A. Multi-surface failure criterion for saline ice in the brittle regime[J]. Cold Regions Science and Technology, 2003, 36(1-3):47-70
[3] QI K L, LIU J, LIU S W, et al. Strength assessment of polar ships under ice loads using direct calculation method[J]. Journal of Ship Mechanics, 2014, 18(6):662-677
[4] XU D, LIU J, LIU S W. Research on limit load criteria for polar ships under ice loads[J]. Journal of Ship Mechanics, 2014, 18(3):280-290
[5] DERRADJI-At A. A unified failure envelope for isotropic fresh water ice and iceberg ice[C]//2000.
[6] DERRADJI-At A. Multi-surface failure criterion for saline ice in the brittle regime[J]. Cold Regions Science and Technology, 2003, 36(1-3):47-70
[7] TIMCO G W, SUDOM D. Revisiting the sanderson pressure-area curve:defining parameters that influence ice pressure[J]. Cold Regions Science & Technology, 2013, 95(11):53-66
[8] 张健. 冰载荷作用下船舶结构动态响应及损伤机理[M]. 北京:国防工业出版社, 2015.
[9] 胡志强, 高岩, 姚琪. 一种理想弹塑性模拟的冰材料本构模型[J]. 船舶与海洋工程, 2016(1):65-73 HU Zhi-qiang, GAO Yan, YAO Qi. An ideal elastoplastic constitutive model for ice materials[J]. Ship and Ocean Engineering, 2016(1):65-73