本文以中国船舶及海洋工程设计研究院(MARIC)研发的某20 000吨级PC5级极地多用途运输船为目标船型,建立货舱区计算模型。基于IACS URI规范关于冰载荷及相应计算工况的要求,进行冰载作用下中部冰带区域舷侧结构有限元分析。在此基础上,集成Isight/Nastran对目标区域冰带骨架系统进行优化设计。以目标区域冰带结构重量最轻为目标函数,以结构合成应力、板格屈曲限制以及其他相关规范尺度要求为约束条件,重点对冰带骨架系统进行分级优化设计。具体优化方案为:基于货舱区舷侧冰带结构,初步设定四型骨架系统布置方案;采用多岛遗传算法(MIGA)分别对各个方案进行优化;最后对四型优化后的方案进行对比分析,综合评估得出适用于目标船型的相对最优方案。本文所得出的结论有力地指导了目标船型开发工作,所总结得出的优化思路、解决途径可进一步扩展应用至高冰级极地船型。
This paper takes a 20000 t PC5 polar multi-purpose transport ship which has been developed by MARIC as the target ship, and the calculation model of cargo hold is established. Based on the requirements of the IACS URI specification for ice load and corresponding calculation conditions, the finite element analysis of the side structure in ice belt zone under ice load is carried out. Besides, the integrated Isight/Nastran is used to optimize the ice belt frame system in the target area. With the objective function of the lightest weight of the structure in the target area, the combined stress, plate buckling and other requirements of rules are considered as constraints, and the optimal design of the ice belt frame system is investigated. The optimization scheme is as follows:Firstly, based on the side structure in ice belt zone, four types of layout scheme of the frame system are preliminarily set. Secondly, the Multi Island Genetic Algorithm (MIGA) is used to optimize each scheme respectively. Finally, the comparative analysis of the four optimized schemes is carried out, and the relative optimal scheme suitable for the target ship is established. The conclusion of this paper can effectively guide the development of the target ship, and the optimization ideas and methods can be further applied in polar ship with higher ice level.
2019,41(5): 49-54 收稿日期:2018-05-17
DOI:10.3404/j.issn.1672-7649.2019.05.010
分类号:U661.4
基金项目:工信部高技术船舶科研计划支持资助项目
作者简介:吴俊(1990-),男,硕士,研究方向为船舶与海洋工程结构物设计
参考文献:
[1] 吴刚, 张东江. 极地船舶技术最新动向[J]. 中国船检, 2015(3):97-101
[2] 张健, 韩文栋. 极地破冰船技术现状及我国发展对策[J]. 中国水运(下半月), 2016, 16(5):47-50
[3] KWON J, JEON B, KIM J, et al. Structural integrity assessment of cargo containmentsystems in arctic LNG carriers under ice loads[C]//Arctic Shipping Conference, 2008, St. Petersburg, Russia.
[4] WANG G, BASU R, CHAVDA D, et al. Rationalization of design ofside structure of ice strengthened tankers[C]//International Journal of Offshore andPolar Engineering, 2005, 15(3):210-219.
[5] DOLNY J, LIU S, WON D, et al. Structural integrity assessment for a Polar Class arctictanker under ice loads[C]//ICETECH. 2010, Alaska, USA.
[6] 徐栋, 载荷作用下极区船舶强度校核研究[D]. 上海:上海交通大学, 2014.
[7] 田喜民, 邹早建, 纪均, 等. 冰区航行船舶冰载荷研究发展综述(英文)[J]. 船舶力学, 2015, 19(3):337-348
[8] Lloyd's Register Rules and Regulations, 2015, 7.
[9] 丁泉惠, 王森, 黄修长, 等. 基于有限元法和多岛遗传算法的飞轮结构参数优化设计[J]. 噪声与振动控制, 2016, 36(2):56-60
[10] 徐栋, 刘俊, 刘杜文. 冰载荷作用下极区船舶极限载荷准则研究(英文)[J]. 船舶力学, 2014, 18(3):280-290