为提高舰船功率容量及传输效率,采用中压直流配电的综合电力系统势在必行,由于舰船大功率负载频繁切换、高能武器投切、脉冲负载等的影响会对直流配电系统稳定性带来冲击性影响,故采用短时大功率飞轮储能系统并入电网对其进行功率调节与电压补偿以增强其稳定性。本文基于Matlab/Simulink平台建立了匹配中压直流电网的飞轮储能充放电并网仿真模型,探究飞轮储能充放电模式切换的动态特性及对直流电网电压稳定性的影响,结果表明大功率飞轮储能系统能够有效提高直流电网稳定性,抑制电压凹陷,并能够为后续飞轮储能充放电模式切换改进优化提供指导。
In order to improve the power capacity and transmission efficiency of the ship, the integrated power system with medium voltage DC power distribution is imperative. The impact of the frequent switching of high power load, high energy weapon and pulse load on the stability of the DC distribution system will be impacted. Therefore, the short time high-power flywheel energy storage system is adopted. Power regulation and voltage compensation are added to the grid to enhance its stability. In this paper, a simulation model of flywheel energy storage charging and discharging with a medium voltage DC power grid based on the platform of Matlab/Simulink is established to explore the dynamic characteristics of the switching mode of the flywheel energy storage charge discharge mode and the influence on the voltage stability of the DC power grid. The results show that the high power flywheel energy storage system can effectively improve the stability of the direct current grid and suppress the voltage sag. It can provide guidance for improving and optimizing the charging and discharging mode of the flywheel energy storage.
2019,41(5): 100-104 收稿日期:2018-07-16
DOI:10.3404/j.issn.1672-7649.2019.05.020
分类号:TK221
作者简介:孙鹏(1981-),男,高级工程师,主要从事燃气轮机总体性能及系统集成等
参考文献:
[1] DOERRY N. Next generation integrated power system:NGIPS technology development roadmap[R]. Naval Sea Systems Command, 2007.
[2] 马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015, 10(4):3-10 MA Wei-ming. Conversion technology of electromechanical energy in Shipboard integrated power system[J]. Journal of Electrical Engineering, 2015, 10(4):3-10
[3] 付立军, 刘鲁锋, 王刚, 等. 我国舰船中压直流综合电力系统研究进展[J]. 中国舰船研究, 2016, 11(1):72-79 FU Li-jun, LIU Lu-feng, WANG Gang, etc. Research progress of medium voltage DC integrated power system in China[J]. China Ship Research, 2016, 11(1):72-79
[4] DOERRY Norbert H, AMY John V. Implementing quality of service shipboard power system design[C]. IEEE Electric Ship Technologies Symposium, Alexandria, 2011:1-8.
[5] 程垠钟, 李莉红, 晏阳, 等. 基于PLECS的船舶中压直流综合电力系统仿真研究[J]. 舰船科学技术, 2016, 38(4):87-92 CHENG Yin-zhong, LI Li-hong, YAN Yang, etc. Simulation study of ship medium voltage DC integrated power system based on PLECS[J]. Ship science and technology, 2016, 38(4):87-92
[6] 纪锋, 付立军, 王公宝, 等. 舰船综合电力系统飞轮储能控制器设计[J]. 中国电机工程学报, 2015, 35(12):2952-2959 JI Feng, FU Li-jun, WANG Gong-bao, et al. Design of flywheel energy storage controller for ship integrated power system[J]. Chinese Journal of Electrical Engineering, 2015, 35(12):2952-2959
[7] 孙晓静. 飞轮电池控制策略研究及其应用[D]. 兰州:兰州理工大学, 2013. 09. SUN Xiao-jing. Research and application of flywheel battery control strategy[D]. Lanzhou:Lanzhou University of Technology, 2013. 09.
[8] 刘学, 姜新建, 张超平, 等. 大容量飞轮储能系统优化控制策略[J]. 电工技术学报, 2014, 3(29):75-82 LIU Xue, JIANG Xin-Jian, ZHANG Chao-ping, et al. Optimal control strategy for large capacity flywheel energy storage system[J]. Journal of Electrical Technology, 2014, 3(29):75-82