随着科学技术的发展,越来越多的学者关注水下爆炸对舰船结构的毁伤特性研究。应力波作为结构载荷和能量传递的形式,对于认识结构系统的冲击响应特性至关重要。但是,关于水下爆炸载荷作用下船体板架类变截面结构中应力波的传播特性目前仍认识不足。本文将基于应力波理论,借助有限元法研究在冲击载荷作用下变截面杆和舷侧外板中弹性波的传播特性。首先,结合应力波理论,基于耦合的欧拉-拉格朗日法(CEL)和欧拉体积分数法研究在水下爆炸冲击载荷作用下变截面杆中弹性波的传播特性,对数值研究方法的精度进行验证;然后研究舷侧外板在受到水下爆炸冲击载荷作用下结构中弹性波的传播特性,并且利用冲击响应谱分析方法研究结构的响应规律,为后续研究复杂舰船结构的冲击响应规律提供参考。
With the development of science and technology, more and more scholars pay attention to the damage characteristics of ship structures subjected to underwater explosion. As the form of structural load and energy transfer, stress wave is very important to understand the shock response characteristics of structural system. However, the propagation characteristics of stress wave in the variable section structure of the ship hull under the underwater explosion load are still unknown. Based on the stress wave theory and the finite element method, the propagation characteristics of elastic wave in a cross-section bar and side plating under impact load are investigated in this paper. Firstly, this paper discusses the propagation characteristics of elastic wave in a variable cross-section bar under underwater explosion load and verify the accuracy of numerical method according to the stress wave theory, Coupled Eulerian-Lagrangian method (CEL) and Eulerian volume fraction method; Then this paper discusses the propagation characteristics of elastic wave in side plating subjected to underwater explosion shock load and studies the response pattern of plates. Finally, this paper can provide a reference for the research of shock response in complex ship structures.
2019,41(7): 12-19 收稿日期:2018-07-20
DOI:10.3404/j.issn.1672-7649.2019.07.003
分类号:U661.4
基金项目:国家自然科学基金资助项目(51679044)
作者简介:孟子飞(1994-),男,硕士研究生,研究方向为舰船结构毁伤与生命力评估
参考文献:
[1] 宗智. 水下爆炸结构毁伤的数值计算[M]. 北京:科学出版社, 2014.
[2] 明付仁. 水下近场爆炸对舰船结构瞬态流固耦合毁伤特性研究[D]. 哈尔滨:哈尔滨工程大学, 2014.
[3] 王礼立, 胡时胜. 锥杆中应力波传播的放大特性[J]. 宁波大学学报(教育科学版), 1988(1):78-87 WANG Li-li, HU Shi-sheng. Amplification characteristics of stress wave propagation in cone bars[J]. Journal of Ningbo University(Educational Science Edition), 1988(1):78-87
[4] 周光泉, 刘孝敏. 应力波放大器二维数值分析[J]. 应用数学和力学, 1985, 6(9):797-806 ZHOU Guang-quan, LIU Xiao-min. Two-dimensional numerical analysis of stress-wave-amplifier[J]. Applied Mechanics, 1985, 6(9):797-806
[5] 刘孝敏, 胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000, 20(2):110-114 LIU Xiao-min, HU Shi-sheng. Wave propagation characteristics in cone bars used for variable cross-section SHPB[J]. Explosion and Shock Waves, 2000, 20(2):110-114
[6] FOLLANSBEE P S, FRANTZ C. Wave propagation in the split hopkinson pressure bar[J]. Journal of Engineering Materials & Technology, 1983, 105(1):61-66
[7] GONG J C. Dispersion investigation in the split hopkinson pressure bar[J]. Journal of Engineering Materials & Technology, 1990, 112(3):208-214
[8] 巫绪涛, 胡时胜, 杨伯源, 等. SHPB技术研究混凝土动态力学性能存在的问题和改进[J]. 合肥工业大学学报(自然科学版), 2004, 27(1):63-66 WU Xu-tao, HU Shi-sheng, YANG Bo-yuan. An improvement in measuring the dynamic properties of concrete material by the traditional SHPB technique[J]. Journal of Hefei University of Technology(Natural Science Edition), 2004, 27(1):63-66
[9] 董钢, 巫绪涛, 杨伯源, 等. 直锥变截面Hopkinson压杆实验的数值模拟[J]. 合肥工业大学学报自然科学版, 2005, 28(7):795-798 DONG Gang, WU Xu-tao, YANG Bo-yuan. Numerical simulation of the conic variable cross-sectional SHPB[J]. Journal of Hefei University of Technology(Natural Science Edition), 2005, 28(7):795-798
[10] 王礼立. 应力波基础-第2版[M]. 北京:国防工业出版社, 2005.
[11] 李刚, 艾森, 唐霄汉, 等. Abaqus的CEL算法在整流罩地面分离试验仿真中的应用研究[C]//中国计算力学大会2014暨钱令希计算力学奖颁奖大会. 2014. LI Gang, AI Sen, TANG Xiao-han, The application and study on the ground separation of a large-scale payload fairing based on CEL algorithm in abaqus[C]//Chinese Conference on Computational Mechanics and QIAN Lingxi prize for Computational Mechanics, 2014.
[12] BENSON D J, OKAZAWA S. Contact in a multi-material Eulerian finite element formulation[J]. Computer Methods in Applied Mechanics & Engineering, 2004, 193(39-41):4277-4298
[13] SIMULIA D. Abaqus version 2016 documentation[Z]. USA:Dassault Systems Simulia Corp, 2012.
[14] QIU G, HENKE S, GRABE J. Application of a coupled eulerian-lagrangian approach on geomechanical problems involving large deformations[J]. Computers & Geotechnics, 2011, 38(1):30-39
[15] COLE R H. Underwater explosions. New Jersey:Princeton University Press, 1948:100-127.
[16] ZAMYSHLYAYEV B V. Dynamic loads in underwater explosion. 1973, AD-757183.