多耐压体大潜深平台在深海静水压力作用下各耐压体纵向变形存在明显差异,导致连接结构发生弯曲变形,会对结构安全和相连设备造成不利影响。对比分析连接结构焊接和接头连接的优缺点,提出一种固定接头与活动接头结合的连接结构接头连接方案,使得连接结构最大主应力相比焊接时降低41.1%。为使连接结构接头连接方案能够更好地承载纵向冲击载荷,设计了一种位移补偿接头,既能在下潜过程中实现耐压体纵向自由移动,又能在下潜到工作深度后和固定接头一起承受纵向冲击载荷。本文可为多耐压体大潜深平台连接结构设计提供有益参考。
Axial displacement of each pressure hull of deep-sea platform has obvious difference under the hydrostatic pressure. The different axial displacements can cause connecting structure to bend, and cause negative influence on structure safety and connecting equipment. With merit and demerit analysis of weld and joint, one joint design with fixed joint and moving joint of connecting structure is proposed, and the connecting structure's maximum principle stress of joint design is 49.8% lower than that of weld. In order to bear axial impact load better, displacement-compensation joint is designed. The joint allows pressure hull to move freely in axial when the deep-sea platform dives, and can bear axial impact load together with fixed joint in operating depth. The work can provide reference on the connecting structure for deep-sea multi-pressure hull.
2019,41(7): 84-89 收稿日期:2017-12-16
DOI:10.3404/j.issn.1672-7649.2019.07.016
分类号:U661.4
基金项目:国家自然科学基金资助项目(51779232)
作者简介:杜一凡(1992-),女,助理工程师,主要从事船舶与海洋结构物设计
参考文献:
[1] CHIN J, DAVY H, NATE L, et al. Design report littoral warfare submarine (SSLW)[D]. VT Total Ship Systems Engineering, Virginia Tech Ocean Engineering Team SCRAP, 2005.
[2] PRINS C A, VERSTEEG N, BREEN P C, et al. REACH a submerged remote sensing reconnaissance system[C]//Undersea Defense Technology Europe Conference &Exhibition, 2008.
[3] 汪玉, 姚耀中. 世界海军潜艇[M]. 北京:国防工业出版社, 2006:315-318.
[4] 谢祚水, 王自力, 吴剑国. 潜艇结构分析[M]. 武汉:华中科技大学出版社, 2003:199-216.
[5] 唐俊娟, 司马灿, 张效慈. 新型大潜深平台多耐压体连接结构设计[J]. 江苏船舶, 2010, 27(1):1-7 TANG Jun-juan, SI Ma-can, ZHANG Xiao-ci. Design on a new-type large diving depth platform multi pressure shells bonded structure[J]. Jiangsu Ship, 2010, 27(1):1-7
[6] 徐强, 万正权, 沈永春. 深海多体连接框架结构设计研究[J]. 钢结构, 2011, 26(9):46-50 XU Qiang, WAN Zheng-quan, SHEN Yong-chun. Structure design and research on framework of deep-sea multi-pressure hull[J]. Steel Construction, 2011, 26(9):46-50
[7] LU Y H, ZENG J, WU P B, et al. Fatigue life initiative reliability design method of welded bogie frame of railway vehicles[C]//International Conference on Computer Engineering and Technology, 2010.
[8] LU Y H, ZENG J, WU P B, et al. Research on multiaxial fatigue strength assessment of railway vehicle bogie frame[C]//International Conference on System Science, 2010.
[9] RAHMAN M. Modeling, analysis and fatigue life predition of lower suspension arm[J]. Advanced Materials R, 2011, 264-265:1557-1562
[10] 闫坤, 王瑞杰. 最大主应力预测点焊疲劳寿命研究[J]. 机械科学与技术, 2016, 35(9):1387-1390 YAN Kun, WANG Rui-jie. Fatigue life prediction for spot welded joints considering major principal stress[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9):1387-1390
[11] 杨华保, 谢洪涛, 史振海, 等. 融合式内外层结构受力特性分析[J]. 航空工程进展, 2014, 5(4):469-474 YANG Hua-bao, XIE Hong-tao, SHI Zhen-hai, et al. Analysis on stress characteristics of reusable launch vehicle's inner and outer structure[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4):469-474