本文在“非停走停”条件下建立斜视多接收阵合成孔径声呐的几何模型和精确距离史。由于精确时延史十分复杂,无法直接用于推导成像算法,通过2次近似,得到修正斜视距离史。距离史误差的分析结果表明,修正斜视距离史能够满足窄波束小斜视的成像要求。在算法推导部分,首先通过距离空变的相位补偿因子和参考距离上的时延补偿因子,将多接收阵信号转变成了单基斜视信号,再借用斜视单基距离多普勒算法,提出小斜视角多接收阵合成孔径声呐距离多普勒算法。最后通过计算机仿真实验证明了本文方法的有效性和正确性。
This work establishes the geometric model and the accurate range history of a squint multi-receiver synthetic aperture sonar (SAS) under the non-stop-hop-stop condition. Since the accurate range history is so complex, it cannot be directly used to derive an imaging algorithm, and should be approximated twice to obtain the modified squint range history. Then the comparison results of the range history error at different squint angles show that the modified squint range history meets the requirement of imaging under the condition of narrow beam and small squint angle. In the derivation of the imaging algorithm, the squint multi-receiver signal is converted into the squint monostatic signal by the phase compensation factor of range dependent and the delay compensation factor on reference range, then the multi-receiver range Doppler algorithm (RDA) is proposed by drawing on the classic squint monostatic RDA. Finally, the validity of MANLCSA is proved by computer simulation.
2019,41(7): 124-129 收稿日期:2019-02-25
DOI:10.3404/j.issn.1672-7649.2019.07.024
分类号:TB566
基金项目:国家自然科学基金资助项目(61671461)
作者简介:吕金华(1973-),男,副教授,研究方向为船舶电子电气
参考文献:
[1] MARX D, NELSON M, CHANG E. An introduction to synthetic aperture sonar[C]//Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing. In Pocono Manor, USA, 2000:717-721.
[2] GILMOUR.G.A Synthetic aperture side-looking sonar system[J]. Journal of the Acoustical Society of America, 1978, 65(2):557-562
[3] S. WANG Z S, R. WU. Modified range Doppler imaging method for the high squint SAR[M]. 2010 IEEE Radar Conference. 2010.
[4] RANEY R K, RUNGE H, BAMLER R. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):786-799
[5] MISHRA N, MEDASANI S S. Extended omega-K algorithm for high squint mode airborne SAR imaging with motion compensation[C]//2014 IEEE International Microwave and RF Conference In Bangalore, India, 2014:352-355.
[6] ZAUGG E C, LONG D G. Generalized frequency-domain SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3761-3773
[7] TAT SOON Y, NGEE LENG T, CHENG BO Z. A new subaperture approach to high squint SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5):954-968
[8] LIU B, WANG T, BAO Z. An analytical method of updating the range derivatives and a simple Image registration method for the MSR-based range doppler algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4):831-835
[9] ZHANG Z, XING M, LI L. Chirp scaling algorithm for parallel bistatic SAR data processing[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. In Cape Town, South Africa, 2009:53-56.
[10] HE Y, CAI F Q, SONG X J. A new kind of RMA for translational invariant bistatic SAR configuration[C]//20092nd Asian-Pacific Conference on Synthetic Aperture Radar. In Xian, China, 2009:969-972.
[11] WILKINSON D R. Efficient image reconstruction techniques for a multiple-receiver synthetic aperture sonar[D]. New Zealand:University of Canterbury, 2001.
[12] CALLOW H J. Signal processing for synthetic aperture sonar image enhancement[D]. New Zealand:University of Canterbury, 2003.
[13] ZHANG X, TANG J, ZHONG H. Multireceiver correction for the chirp scaling algorithm in synthetic aperture sonar[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3):472-481