本文针对船舶平面分段流水线调度过程中加工时间和交货期的不确定性,采用模糊化手段进行调度决策。为了应对船舶平面分段生产过程中的急件插入的情况,提出描述船舶平面分段单流水线反应式调度问题的数学模型,以最小化模糊最大完工时间makespan、最大化平均AICD、最大化平均AISS为调度目标,设计了求解模型的一种多目标文化基因算法。基于解的形式采用有效的变异、交叉操作,并嵌入局部搜索算子以增强算法搜索能力。本研究通过makespan和satisfaction两个指标反映算法的有效性,通过甘特图模拟仿真调度过程,为实际船舶平面分段的生产建造提供决策支持。
This study is focused on the uncertainties of processing time and delivery time in the process of hull-level segmented assembly line scheduling, which using fuzzy scheduling data. The study proposes a mathematical model describing the general pipeline reactive scheduling problem for ship plane segmentation, aimed at dealing with the situation of urgent inserts in the production process. In order to minimize the fuzzy makespan, maximize the average AICD and maximize the average AISS, a multi-objective cultural gene algorithm for solving the model is designed. The solution-based form uses effective mutation and crossover operations and embeds local search operators to enhance the algorithm's search capabilities. This study validates the effectiveness of the algorithm through two indicators, makespan and satisfaction. And simulate simulation scheduling process using Gantt charts to provide decision support for production and construction of actual ship plane sections.
2019,41(8): 7-11 收稿日期:2018-05-18
DOI:10.3404/j.issn.1672-7649.2019.08.002
分类号:U671.4
作者简介:兰宏凯(1994-),男,硕士研究生,研究方向为船舶数字化智能制造与生产
参考文献:
[1] REZA HEJAZI S, SAGHAFIAN S. Flowshop-scheduling problems with makespan criterion:a review[J]. International Journal of Production Research, 2005, 43(14):2895-2929
[2] RUIZ R, VÁZQUEZ-RODRÍGUEZ J A. The hybrid flow shop scheduling problem[J]. European Journal of Operational Research, 2010, 205(1):1-18
[3] YENISEY M, YAGMAHAN B. Multi-objective permutation flow shop scheduling problem:Literature review, classification and current trends[J]. Omega, 2014, 45:119-135
[4] SAKAWA M, MORI T. An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate[J]. Computers & industrial engineering, 1999, 36(2):325-341
[5] 杨志, 柳存根. 船舶平面分段流水线多目标模糊调度的改进粒子群算法[J]. 舰船科学技术, 2018, 40(5):46-51
[6] WANG C, TIAN N, JI Z, et al. Multi-objective fuzzy flexible job shop scheduling using memetic algorithm[J]. Journal of Statistical Computation and Simulation, 2017, 87(14):2828-2846
[7] 蔡斌. 基于文化基因算法的车间作业调度理论研究及实践[D]. 重庆:重庆大学, 2012.
[8] 王君. 带时间窗车辆路径问题的多目标文化基因算法[J]. 计算机工程与科学, 2013, 35(1):124-129
[9] 魏心泉, 王坚. 多目标资源优化分配问题的Memetic算法[J]. 控制与决策, 2014, 29(5):809-814
[10] 苗长胜, 原常青, 王兴伟, 等. 基于互信息和文化基因算法的网络流量特征选择[J]. 东北大学学报(自然科学版), 2014, 35(11):1530-1534
[11] YANG Zhi, LIU Cun-gen. A multi-objective genetic algorithm for a fuzzy parallel blocking flow shop scheduling problem[J]. Academic Journal of Manufacturing Engineering, 2018, 16(2):3-11