为分析LNG船B型独立液货舱的支撑结构在晃荡载荷作用下的受力情况,建立二维有限元模型,简化支撑结构,基于任意拉格朗日-欧拉方法和体积模量缩减技术,采用Abaqus对液舱晃荡进行数值仿真,得到不同工况下支撑结构作用力随时间的变化情况。有结论以下:1)周期性横摇使支撑结构作用力周期性变化;2)横摇幅值越大,作用力变化范围越大;3)与固体货物相比,装载等密度等体积液体货物时,作用力变化范围更大;4)在液货舱内设置挡板能够降低作用力变化范围。本文采用的计算方法和得到的结论能够为初步设计阶段支撑结构的强度及疲劳分析提供帮助。
To conduct the force analysis of the support structure of LNG independent Type B tank under sloshing loads, a two-dimensional finite element model with simplified support structure was established. The Abaqus was used to simulate the sloshing and calculate the force of the support structure under different cases based on arbitrary Lagrangian-Eulerian method and bulk modulus reduction technique. The following conclusions are drawn:1. the periodic rolling motion results in the periodic support structure force; 2. the larger the rolling amplitude, the greater the range of the force variation; 3. in the same density and volume, the range of force variation caused by liquid cargo is greater than solid cargo; 4. the baffles in the cargo tank can reduce the range of force variation. The numerical methods and conclusions in this paper can contribute to the strength and fatigue analysis of the support structure during the preliminary design phase.
2019,41(8): 17-22 收稿日期:2018-03-26
DOI:10.3404/j.issn.1672-7649.2019.08.004
分类号:U663.8
基金项目:国家自然科学基金资助项目(51709120);中央高校基本科研业务费专项资金资助项目(2017KFYXJJ004)
作者简介:董问(1993-),男,硕士研究生,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] 刘文夫, 薛鸿祥, 唐文勇, 等. 独立B型LNG棱形液舱晃荡载荷数值分析[J]. 船舶工程, 2015(7):22-25 LIU Wen-fu, XUE Hong-xiang, TANG Wen-yong, et al. Sloshing loads analysis of LNG carrier with independent Type B prismatic tanks[J]. Ship Engineering, 2015(7):22-25
[2] IMO, International code for the construction and equipment of ships carrying liquefied gases in bulk[S]. International Maritime Organization (IMO), 2012.
[3] 陆志妹, 范佘明. 船舶液舱晃荡研究进展[J]. 船舶与海洋工程, 2010(2):14-16.
[4] NAKAYAMA T, WASHIZU K. Nonlinear analysis of liquid motion in a container subject to forced pitching oscillation[J]. International Journal for Numerical Methods in Engineering, 1980, 15(8):1207-1220
[5] HIRT CW, NICHOLS BD. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225
[6] HIRT CW, AMSDEN AA, COOK JL. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3):227-253
[7] 王永伟, 王晶. SPB储罐系统设计及特点[J]. 船舶物资与市场, 2007(6):18-20.
[8] 丁峻宏, 金允龙, 王惠. 基于ALE的矿粉货物液化晃荡问题并行数值模拟[J]. 船舶力学, 2015(8):927-933 DING Jun-hong, JIN Yun-long, WANG Hui. ALE-based parallel numerical simulation for sloshing problem of liquefied ore fines cargo[J]. Journal of Ship Mechanics, 2015(8):927-933
[9] 郑建国. 一般状态方程多流体界面数值方法研究[D]. 合肥:中国科学技术大学, 2005.
[10] 吴宗铎, 严谨, 蒋颉, 等. 基于Mie-Grüneisen状态方程的水下爆炸数值模拟[J]. 舰船科学技术, 2017, 39(13):29-33 WU Zong-duo, YAN Jin, JIANG Jie, et al. The numerical simulation of underwater explosion based on Mie-Grüneisen equation of state[J]. Ship Science and Technology, 2017, 39(13):29-33
[11] ABAQUS 6.10. Analysis user's manual[M]. Dassault Systèmes, 2010.
[12] 莫建军, 孙承纬. 200 GPa压力范围内铝和铜的等熵压缩线计算[J]. 高压物理学报, 2006, 20(4):386-390 MO Jian-jun, SUN Cheng-wei. Compression isentropes of aluminum and copper up to 200 GPa[J]. Chinese Journal of High Pressure Physics, 2006, 20(4):386-390
[13] 冉宪文. 混合物高压物态方程的理论研究[D]. 长沙:国防科学技术大学, 2002.
[14] 程利冬, 王忠金. 高速锤击体积变形过程的有限元分析[J]. 哈尔滨工程大学学报, 2008, 29(2):183-188 CHENG Li-dong, WANG Zhong-jin. Finite element analysis of the deformation process in high impact hammering[J]. Journal of Harbin Engineering University, 2008, 29(2):183-188
[15] NAKAYAMA T, WASHIZU K. The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems[J]. International Journal for Numerical Methods in Engineering, 1981, 17(11):1631-1646
[16] 杜显赫. 预应力LNG储罐在地震作用下的流固耦合数值模拟[D]. 沈阳:沈阳工业大学, 2011.