随着大型集装箱船的发展,斜浪条件下的扭矩载荷特性及其结构响应日益重要。以某大型集装箱船为研究对象,建立水动力湿表面计算模型和质量模型,研究基于扭矩传递函数和主要载荷控制参数的斜浪设计波参数确定方法,分析不同超越概率水平下扭矩计算值的规律。考虑典型斜浪参数和超越概率水平,分析水动力计算扭矩与船舶规范(ABS和HCSR)扭矩的差异及原因,提出集装箱船扭矩载荷计算与应用的建议。通过计算45°,60°和75°斜浪条件下的船体结构应力云图,识别斜浪作用下船体结构响应的关键位置,可作为大型集装箱船结构设计过程中船体梁扭转强度计算、舱口角隅设计、抗扭箱强度评估等的参考。
It is important to study on torque load characteristics and structural responses under oblique waves as the development of large container. This paper built up wet surface model and mass model based on a large container, and studied on how to determine the design wave parameters according to the torque response function and dominant load parameters. And we analyzed the relationship between the exceeding probability level and calculated torque. This paper worked on the torque's differences and its reason among dynamic load approach (DLA), American Bureau of Shipping (ABS) container rule and "Common Structural Rules for Bulk Carriers and Oil Tankers (HCSR)" considering the typical oblique wave parameters and exceeding probability level. This paper also gave some proposals on how to calculate and applicate the torque load for container ships. On this foundation, we chosen three wave conditions (45°, 60° and 75°) for further case study, and identified the key structural positions under oblique waves by calculating the stress distribution. In conclusion, the study of this paper is a good reference for structural design of large container, such as the torsional strength calculation of hull girder, the design of hatch corner and the strength evaluation of torsional box.
2019,41(8): 23-27 收稿日期:2019-03-07
DOI:10.3404/j.issn.1672-7649.2019.08.005
分类号:U674.13+1
基金项目:国家自然科学基金青年项目(51809124);江苏省自然科学基金青年项目(BK20170576);江苏省高等学校自然科学研究项目(17KJB580006);上海交通大学海洋工程国家重点实验室研究基金项目(1704,1807)
作者简介:丁仕风(1981-),男,博士,高级工程师,从事船舶领域的学术科研和技术研发工作
参考文献:
[1] ALFRED MOHAMMED E, BENSON S D, HIRDARIS S E, et al. Design safety margin of a 10, 000 TEU container ship through ultimate hull girder load combination analysis[J]. Marine Structures, 2016(46):78-101
[2] Ingrid Marie Vincent Andersen, Jørgen Juncher Jensen. Measurements in a container ship of wave induced hull girder stresses in excess of design values[J]. Marine Structures, 2014(37):54-85
[3] 张聆玲, 钟进蓉. 船体梁结构强度的非线性有限元分析[J]. 舰船科学技术, 2019, 41(3A):10-12 ZHANG Lingling, ZHONG Jinrong. Nonlinear finite element analysis of hull beam structural strength[J]. Ship Science and Technology, 2019, 41(3A):10-12
[4] 王翀. 超大型集装箱船扭转强度研究[J]. 船舶工程, 2015(37):28-30, 52
[5] 彭亚康, 王伟飞, 韩钰, 等. 超大型集装箱船载荷响应特性的数值研究[J]. 舰船科学技术, 2019, 41(3):62-67 PENG Yakang, WANG Weifei, HAN Yu, et al. The numerical research for wave load response characteristic of ultra large container[J]. Ship Science and Technology, 2019, 41(3):62-67
[6] PAPANIKOLAOU A, ALFRED MOHAMMED E, SPYROS E, HIRDARIS. Stochastic uncertainty modelling for ship design loads and operational guidance[J]. Ocean Engineering, 2014(86):47-57
[7] ZHU Suji, MOAN T. Nonlinear effects from wave-induced maximum vertical bending moment on a flexible ultra large containership model in severe head and oblique seas[J]. Marine Structures, 2014(35):1-25
[8] TAKAMI T, MATSUI S, OKA M, et al. A numerical simulation method for predicting global and local hydroelastic response of a ship based on CFD and FEA coupling[J]. Marine Structures, 2018(59):368-386
[9] HONG-Il IM, VLADIMIR N, MALENICA S, et al. Hydroelastic response of 19, 000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity[J]. International Journal of Naval Architecture and Ocean Engineering, 2017(9):339-349
[10] RAJENDRAN S, GUEDESSOARES C. Numerical investigation of the vertical response of a container ship in large amplitude waves[J]. Ocean Engineering, 2016(123):440-451
[11] Wang Chonglei, Wu Jiameng, Wang Deyu. Numerical investigation of three-dimensional hull girder ultimate strength envelope for an ultra large container ship[J]. Ocean Engineering, 2018(149):23-37
[12] 顾永宁, 滕小青, 顾立广, 等. 大开口船波浪载荷长期预报和弯扭强度整船有限元分析[J]. 中国造船, 1998, 39(2):63-70
[13] TEMAREL P, BAI W, BRUNS A, et al. Prediction of wave-induced loads on ships:Progress and challenges[J]. Ocean Engineering, 2016(119):274-308
[14] YONGHWAN K, HYUNKIM J. Benchmark study on motions and loads of a 6750-TEU container ship[J]. Ocean Engineering, 2016(119):262-273
[15] 郭文, 王铁钢. 集装箱船上层建筑结构优化研究[J]. 舰船科学技术, 2019, 41(2A):16-18 GUO Wen, WANG Tiegang. Research on optimization of superstructure of container ship[J]. Ship Science and Technology, 2019, 41(2A):16-18
[16] 陈庆强, 朱胜昌. 大型集装箱船整船有限元分析计算技术研究[J]. 船舶力学, 2006, 10(1):80-91 CHEN Qingqiang, ZHU Shengchang. Research on numerical technique of whole large container ship by FEM[J]. Journal of Ship Mechanics, 2006, 10(1):80-91
[17] 赵欣, 高茜. 超大型集装箱船全船结构强度分析[J]. 造船技术, 2018(3):6-12
[18] Zhanyang CHEN, Jialong JIAO, Hui LI. Time-domain numerical and segmented ship model experimental analyses of hydroelastic responses of a large container ship in oblique regular waves[J]. Applied Ocean Research, 2017(67):78-93
[19] Sime MALENICA, Quentin DERBANNE. Hydro-structural issues in the design of ultra large container ships[J]. International Journal of Naval Architecture and Ocean Engineering, 2014(6):983-999
[20] Myung-Jae SONG, Kyong-HwanKim, YonghwanKim. Numerical analysis and validation of weakly nonlinear ship motions and structural loads on a modern container ship[J]. Ocean Engineering, 2011(38):77-87
[21] S. E. HIRDARIS, Y. LEE, G. MORTOLA, et al The influence of nonlinearities on the symmetric hydrodynamic response of a 10, 000 TEU Container ship[J]. Ocean Engineering, 2016(111):166-178
[22] 中国船级社(CCS). 钢质海船入级规范[S]. 北京:人民交通出版社有限公司, 2015.
[23] American Bureau of Shipping (ABS). Rules for Building and Classing Steel Vessels[S]. Houston:ABS, 2015.
[24] International Association of Classification Societies (IACS). Common Structural Rules for Bulk Carriers and Oil Tankers[S]. London:IACS, 2018.