滑动模态控制在无人潜水器运动控制中已经得到较多应用,但其引发的抖振现象仍未很好解决。本文对潜水器的高度控制进行研究,提出一种变增益滑动模态控制方法,旨在保持控制精度的同时抑制抖振现象。此外,还设计了基于高度传感器测量值的非线性状态观测器,以得到高更新率和可靠性的高度及垂荡速度反馈信息,从而改善高度控制系统的控制品质。水池实验验证了本文方法的有效性。
Despite some successful applications of sliding mode control (SMC) in motion control of underwater vehicles, the chattering phenomenon of SMC is undesirable for control engineers and remain unresolved. A gain switching SMC which adjusts the output gain of the controller adaptively to suppress chattering is proposed in this paper. Moreover, to implement the state-feedback based scheme in altitude control of a remotely operated vehicle (ROV), a nonlinear state observer is adopted, which estimates the precise altitude and vertical velocity of ROV with higher update rate and reliability. The proposed approach is verified by tank tests.
2019,41(8): 59-63 收稿日期:2017-12-12
DOI:10.3404/j.issn.1672-7649.2019.08.012
分类号:TP273
基金项目:国家发改委海洋工程装备研发和产业化专项资助
作者简介:庄鹏(1993-),男,硕士研究生,研究方向为潜水器运动控制
参考文献:
[1] CHU Z, ZHU D, YANG S X. Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(7):1633-45
[2] TREBI-OLLENNU A, STACEY B A, WHITE B A. A multivariable decoupling design of an ROV depth control system (A Direct Adaptive Fuzzy SMC Approach)[J]. Journal of dynamic systems, measurement, and control, 1997, 119(1):89-94
[3] MUÑOZ-VÁZQUEZ A J, RAMÍREZ-RODRÍGUEZ H, PARRA-VEGA V, et al. Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances[J]. International Journal of Control Automation & Systems, 2016, 15(1):1-8
[4] LIANG X, QU X, HOU Y, et al. Three-dimensional path following control of underactuated autonomous underwater vehicle based on damping backstepping[J]. International Journal of Advanced Robotic Systems, 2017, 14(4):1-9
[5] WANG Y H, WU Q X, LIU X. Adaptive fuzzy sliding mode control for MIMO nonaffine dutch-roll system[J]. Journal of Dynamic Systems Measurement & Control, 2017, 139(10):101-9
[6] SONG B K, AN J H, CHOI S B. A new fuzzy sliding mode controller with a disturbance estimator for robust vibration control of a semi-active vehicle suspension system[J]. Applied Sciences, 2017, 10(7):1053-73
[7] TONG S, LI H X. Fuzzy adaptive sliding-mode control for MIMO nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(3):354-60
[8] Y X, N F-C. Genetic algorithm based sliding mode control in the leader/follower satellites pair maintenance[J]. Advances in the Astronautical Sciences, 2004, 116:1-16
[9] EDWARDS C, SPURGEON S K. Sliding mode control:theory and applications[M]. Crc Press, 1998.
[10] YOUNG K D, UTKIN V I, OZGUNER U. A control engineer's guide to sliding mode control[J]. IEEE Transactions on Control Systems Technology, 1999, 7(3):328-42
[11] SOYLU S, BUCKHAM B J, PODHORODESKI R P. A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean Engineering, 2008, 35(16):1647-59
[12] CICCARELLA G, MORA M D, GERMANI A. A Luenberger-like observer for nonlinear systems[J]. International Journal of Control, 1993, 57(3):537-56
[13] 许孟孟, 冯正平, 毕安元. 复杂外形潜水器的动力学建模[J]. 舰船科学技术, 2017, 39(9):23-8
[14] 许孟孟. 具有复杂外形的ROV动力学建模及控制[D]. 上海:上海交通大学, 2017.