为使油浸式变压器内部检测机器人在巡检作业时具有较高的稳定性与机动性,分析机器人在变压器油中的受力及运动的基础上,建立机器人在变压器油中的垂向运动模型。考虑存在外界未知扰动情况,提出一种基于非线性干扰观测器的自适应反步深度控制器,并通过Lyapunov函数证明了控制器的稳定性。仿真实验结果表明,所设计的控制器能够准确实现目标深度控制,有效解决了机器人在复杂环境下未知干扰造成的振荡问题,具有鲁棒性好、可靠性高的特点。
To make the oil-immersed transformer internal inspection robot can maintain the high stability and maneuverability when checking operation, based on the force analysis and motion analysis of the robot in transformer oil, established the vertical motion model of robot in transformer oil. Considering the existence of unknown external disturbances, proposed a nonlinear disturbance observer based adaptive backstepping depth controller, and the stability of the system was proved by the Lyapunov function. Simulation and comparison experiments results show that the designed controller can accurately realize the target depth control in the complex operating environment, effectively solved the oscillation problem caused by the unknown interference of the robot in the complex environment, it has the characteristics of good robustness and high reliability.
2019,41(8): 74-78 收稿日期:2018-08-01
DOI:10.3404/j.issn.1672-7649.2019.08.015
分类号:TP242
作者简介:赵小虎(1993-),男,硕士研究生,主要从事水下机器人控制相关领域研究
参考文献:
[1] 张延恒, 孙汉旭, 褚明, 等. 一种运动灵活的欠驱动球形水下机器人:, CN 103466063 A[P]. 2013. ZHANG Yan-heng, SUN Han-xu, CHU Ming, etc. An underactuated spherical underwater robot with flexible motion:cn103466063 A[P]. 2013.
[2] YUE C, GUO S, LIN X, et al. Analysis and improvement of the water-jet propulsion system of a spherical underwater robot[C]//International Conference on Mechatronics and Automation. IEEE, 2012:2208–2213.
[3] YUE C, GUO S, LI M, et al. Mechatronic System and Experiments of a Spherical Underwater Robot:SUR-Ⅱ[J]. Journal of Intelligent & Robotic Systems, 2015, 80(2):325-340
[4] LIN X, GUO S, TANAKA K, et al. Underwater experiments of a water-jet-based spherical underwater robot[C]//International Conference on Mechatronics and Automation. IEEE, 2011:738–742.
[5] 梁霄. 微小型水下机器人运动控制及可靠性研究[D]. 哈尔滨:哈尔滨工程大学, 2009. LIANG Xiao. Research on motion control and reliability of micro-sized underwater robots[D]. Harbin:Harbin engineering university, 2009.
[6] LIU F, CHEN H. Motion control of intelligent underwater robot based on CMAC-PID[C]//International Conference on Information and Automation. IEEE, 2008:1308–1311.
[7] SHI L, SU S, GUO S, et al. A fuzzy PID control method for the underwater spherical robot[C]//IEEE International Conference on Mechatronics and Automation. IEEE, 2017:626-631.
[8] 刘志民, 孙汉旭, 贾庆轩, 等. 水下球形探测机器人的有限时间点镇定控制[J]. 机器人, 2016, 38(5):569-577 LIU Zhi-min, SUN Han-xu, JIA Qing-xuan, et al. Finite time stabilization control of underwater spherical detection robot[J]. Robot, 2016, 38(5):569-577
[9] DONG Z, WAN L, LI Y, et al. Point Stabilization for an underactuated AUV in the presence of ocean currents[J]. International Journal of Advanced Robotic Systems, 2015, 12(3):1
[10] WANG Y, WANG Z, YIN H. Point stabilization for an AUV based on the addition of a power integrator[J]. Information & Control, 2017
[11] AGUIAR A P, PASCOAL A M. Global stabilization of an underactuated autonomous underwater vehicle via logic-based switching[C]//Decision and Control, 2002, Proceedings of the, IEEE Conference on. IEEE, 2002:3267–3272 vol. 3.
[12] CUI R, ZHANG X, CUI D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities ☆[J]. Ocean Engineering, 2016, 123:45-54
[13] ZHANG L J, JIA H M, JIANG D P. Sliding mode prediction control for 3D path following of an underactuated AUV[J]. IFAC Proceedings Volumes, 2014, 47(3):8799-8804
[14] GUO J, CHIU F C, HUANG C C. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle[J]. Ocean Engineering, 2003, 30(16):2137-2155
[15] 赵可人, 沙宏玮. 变压器油粘度的测定[J]. 变压器, 1989(12):20-23 ZHAO ke-ren, SHA hong-wei. Determination of oil viscosity of transformer[J]. Transformer, 1989(12):20-23
[16] FOSSEN T I. Marine Control System, Guidance, Navigation and Control of Ships, Rigs and Underwater[M]. 2002.