在船用高压共轨柴油机中,共轨压力对喷油量有直接的影响,不同的轨压波动会造成喷油量的明显误差。本文利用Fluent软件将船用柴油机高压共轨燃油系统模型中共轨管模型转化为共轨管中燃油流动的三维模型,通过Simple算法流动仿真计算以及UDF函数模拟实际边界条件,研究共轨管中轨压波动规律以及流场分布。通过对轨压波动频谱分析得出共轨管内压力波动是由供油、喷油和压差反馈引起的。三维流动模型仿真结果显示在高频波动的影响下,共轨管内不同位置压力波动差值可达供油和喷油所引起波动的75%,且不同时刻的喷油量差异达到20%,在轨压控制中必须采取有效控制手段抑制高频波动。
In marine common rail system, rail pressure has a direct effect on injection quantity, and the quantity shows great difference with different pressure waves. A three-dimensional model of the flow in the marine common rail was built based on Fluent in this article. With the use of SIMPLE and UDF, the pressure wave propagation rule and three-dimensional distribution was shown through the simulation result. Frequency analysis shows that rail pressure fluctuation is superposed by waveforms of different frequency produced by oil supply, fuel injection and high frequency fluctuation caused by feedback flow. It can be seen from three-dimensional flow simulation that amplitudes of pressure wave in different positions can be as large as 75% of the total amplitude and the discrepancy of injection quantities at different time can be as large as 20% under the influence of high frequency fluctuation. As a result, an effective control method should be considered in the precise control of rail pressure.
2019,41(8): 103-108 收稿日期:2017-11-19
DOI:10.3404/j.issn.1672-7649.2019.08.020
分类号:U664.121
作者简介:马颖怡(1993-),女,硕士研究生,主要从事船用柴油机高压共轨系统轨压控制研究
参考文献:
[1] 平涛, 徐建新, 方文超, 等. 船用柴油机高压共轨系统动态特性研究[J]. 船舶工程, 2009, 31(3):7-10 PING Tao, XU Jian-xin, FANG wen-chao, et al. Experimental investigation of high pressure common rail system for marine diesel engine[J]. Ship Engineering, 2009, 31(3):7-10
[2] 王书义. 不可压缩流体三维流动的数值计算[J]. 兵工学报坦克装甲车与发动机分册, 1992(2):5-10 WANG Shu-yi. Numerical calculation of three-dimensional flow of incompressible fluid[J]. Acta Armamentarii, 1992(2):5-10
[3] 王海燕, 张伟, 周海涛. 船用大型低速电控柴油机的容积法模型[J]. 内燃机学报, 2008, 26(5):452-456 WANG Hai-yan, ZHANG Wei, ZHOU Hai-tao. Volumetric model of a large-scale low-speed electronically controlled marine diesel engine[J]. Transactions of CSICE, 2008, 26(5):452-456
[4] 王永坚, 李斯钦, 王海燕. 大型低速船用智能柴油机燃油共轨喷射系统的建模与动态仿真[J]. 船舶工程, 2012, 34(4):45-48 WANG Yong-jian, LI Si-qing, WANG Hai-yan. Modeling and dynamic simulation for fuel common rail injection system of large low-speed marine intelligent diesel engine[J]. Ship Engineering, 2012, 34(4):45-48
[5] 王永坚, 杨国豪, 李斯钦. 船用电控柴油机燃油共轨系统与轨压力仿真[J]. 中国航海, 2013, 36(2):22-27 WANG Yong-jian, YANG Guo-hao, LI Si-qin. Simulation for fuel common rail systems and rail pressure about electronically controlled marine diesel engines[J]. Navigation of China, 2013, 36(2):22-27
[6] 屠星星, 王俊雄, 黄丹青, 等. 基于SimulationX的船用高压共轨燃油系统仿真[J]. 舰船科学技术, 2015(3):81-84 TU Xing-xing, WANG Jun-xiong, HUANG Dan-qing, et al. Simulation of the marine high-pressure common rail fuel system based on simulationX[J]. Ship Science and Technology, 2015(3):81-84
[7] 王书义. 用SIMPLE算法计算高压油管内的燃油流动[J]. 兵工学报坦克装甲车与发动机分册, 1989(2):2-9 WANG Shu-yi. Calculation of fuel flow in high pressure fuel pipe by means of simple method[J]. Acta Armamentarii, 1989(2):2-9
[8] 陆方迪. 高压共轨系统轨内压力波特性的仿真研究[D]. 北京:北京交通大学, 2012. LU Fang-di. Simulation of characteristics of pressure fluctuation in the common rail of CRS[D]. Beijing:Beijing Jiao Tong University, 2012.