砰击不仅会造成船体结构局部损坏,严重时还会破坏船体总纵强度,造成人员和财产的损失。基于计算流体力学分析软件STAR-CCM+和有限单元分析软件Abaqus,通过VOF法和FEM法的协同交互耦合,建立考虑结构变形效应的弹性体砰击数值模型,主要研究三维楔形体结构入水砰击时结构动态响应特性及板厚对结构变形效应的影响规律。通过与实验结果对比,验证了数值模拟的有效性。研究得出结构板厚越小,结构弹性效应越强,结构所受压力越小而压力波动越大,同时变形位移越大。
Slamming is of concern for a wide range of ship and offshore structures, it may lead to crew injuries, property loss and even the total structural failure due to fatigue loading. The present interactive fluid-structure interaction solver couples CFD-software STARCCM+ (STAR) to predict the performance of 3D wedge during the impact phase with a FEM-solver Abaqus to model the elastic response of the structure. The structural response characteristics under the slamming loading and significant effects due to the plate thickness on the flexible pattern are mainly concerned. To help ascertain the validity of the present numerical model, comparison with the experiment result is done. It is found that the thinner the plate thickness is, the stronger the elastic effect is, the smaller the pressure is, the greater the pressure changes, and the larger the deformation displacement is.
2019,41(9): 8-14 收稿日期:2018-08-20
DOI:10.3404/j.issn.1672-7649.2019.09.002
分类号:U661.4
基金项目:国家自然科学基金资助项目(51609110,51379093);工信部高技术船舶科研项目(工信部装函(2017)614号)
作者简介:王加夏(1988-),男,讲师,主要研究方向为船舶与海洋工程水动力学、砰击动力学
参考文献:
[1] VON KARMAN T. The impact on seaplane floats during landing[R]. National Advisory Committee for Aeronautics, Technical Memorandum 1929, 321:2-8.
[2] WAGNER H. Uber Stossund Gleitvergange an der Oberflache von Flussigkeiten[J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, 1932, 12(4):193-215
[3] DOBROVOL'SKAYA Z N. On some problems of similarity flow of fluids with a free surface[J]. Journal of Fluid Mechanics, 1968, 36(04):805-829
[4] ZHAO R, FALTINSEN O M. Water Entry of Two-Dimensional Bodies[J]. Journal of Fluid Mechanics, 1993, 246:593-612
[5] MUZAFERIJA, S., PERIC, M., SAMES, P. & SCHELLIN, T., 1998. A two-fluid Navier-Stokes solver to simulate water entry. Proc. 22nd Symp. Nav. Hydrodyn., pp. 638-651.
[6] STAVOYY A B, CHUANG S L. Analytical determination of slamming pressures for high speed vessels in waves[J]. Journal of Ship Research, 1976, 20:190-198
[7] OCHI M. K, MOTTER L. E Prediction of slamming characteristics and hull response for ship design[J]. Transactions SNAME, 1973, 81:144-190
[8] PESEUX B, GORNET L, DONGUY B. Hydrodynamic impact:Numerical and experimental investigations[J]. Journal of Fluids and Structures, 2005, 21(3):277-303
[9] 赵九龙, 闫发锁, 樊磊. 基于改进Wagner方法的轴对称体入水"后时段"砰击载荷数值计算[J]. 船舶力学, 2016, 11:1412-1419
ZHAO Jiu-long, YAN Fa-suo, FAN Lei. Numerical calculation of the slamming load for axisymmetric geometries during the later entry time based on generalized Wagner theory[J]. Journal of Ship Mechanics, 2016, 11:1412-1419
[10] JOHANNESSEN S R. Use of CFD to Study Hydrodynamic Loads on Free-Fall Lifeboats in the Impact Phase.:A verification and validation study[J]. Institutt for Marin Teknikk, 2012
[11] 邹劲, 许杰, 孙寒冰, 等. 考虑流固耦合作用桨毂形状对螺旋桨性能影响研究[J]. 船舶, 2017, 28(1):21-28
ZOU Jin, XU Jie, SUN Han-bing, et al. Effect of hub geometry on propeller performance considering fluid-structure interaction[J]. SHIP & BOAT, 2017, 28(1):21-28
[12] 彭丹丹. 砰击载荷作用下船体结构动态响应研究[D]. 镇江:江苏科技大学, 2017.
PENG Dan-dan. Research on Hull Structural Dynamic Response under Slamming Loads[D]. Zhenjiang:Jiangsu University of Science and Technology, 2017.