纵环加筋圆柱形耐压壳作为一种新型的耐压壳结构,之前对它的屈曲研究大多是基于线弹性理论的屈曲模态和极限承载力计算。由于没有考虑几何和材料非线性,计算值同实验值相差较大,要结合实验对计算结果进行修正。本文将非线性屈曲问题转变为线性静力学问题求解,对纵环加筋圆柱形耐压壳进行了非线性屈曲计算。具体数值计算工作使用专业计算软件完成。非线性屈曲计算结果在屈曲模态上与实验吻合,说明采用的计算方法是合理的。本文对具有不同程度初始缺陷的耐压壳进行了数值计算,证实初始缺陷越大承载能力越低。文中的计算方法和结论可为深潜器耐压壳的设计提供参考。
As a new type of pressure shell structure, the buckling research of longitudinal and ring stiffened cylindrical pressure hull is mostly about the buckling mode and ultimate bearing capacity based on linear elastic theory. Because the geometric and material nonlinearities are not considered, the calculated values are quite different from the experimental values, so the calculated results should be corrected according with the experimental results. In this paper, the nonlinear buckling problem is transformed into the linear statics problem. The nonlinear buckling of a cylindrical pressure hull with longitudinal and ring stiffeners is calculated. The numerical calculation is completed by using the professional calculation software. The results of nonlinear buckling calculation are the same as the experimental results on buckling modes, which demonstrates that the calculation method adopted is reasonable. In this paper, the numerical calculation of pressure hull with different initial imperfections is carried out. It is proved that the larger the initial imperfections are, the lower the bearing capacity is. The calculation methods and conclusions are able to provide reference for the submarine pressure hull design.
2019,41(9): 22-25,109 收稿日期:2018-09-26
DOI:10.3404/j.issn.1672-7649.2019.09.004
分类号:U661.43
作者简介:彭懿(1982-),男,硕士,工程师,从事深潜器研发工作
参考文献:
[1] 李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016(3):210-221
LI Wen-yue, WANG Shuai, LIU Tao, et al. Current status and progress on pressure hull structure of manned deep submersible[J]. Shipbuilding of China, 2016(3):210-221
[2] 张吟, 刘小明, 雷现奇, 等. 基于分层分压结构的新型潜水器耐压壳结构设计[J]. 力学学报, 2017, 49(6):1231-1242
ZHANG Yin, LIU Xiao-ming, LEI Xian-qi, et al. New structural design of spherical pressure hull for deep-sea submersibles:A multilayer and pressure redistribution approach[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6):1231-1242
[3] 张乃樑. 超大潜深潜器结构重量控制措施分析[J]. 舰船科学技术, 2008(8):33-36
ZHANG Nai-liang. The analyses on the structure weight control technique of deeper submersibles pressure columnar hull[J]. Ship Science and Technology, 2008(8):33-36
[4] L. H. DONNELL, C. C. WAN Effect of imperfections on buckling of thin cylinders and columns under axial compression[J]. Journal of Applied Mechanics, 1950(3):72-83
[5] SHEINMAN I, GEORGE J S. Buckling analysis of geometrically imperfect stiffened cylinders under axial compression[J]. AIAA Journal, 1976, 15(3):374-382
[6] 周承倜. 薄壳弹塑性稳定性理论[M]. 北京:国防工业出版社, 1979.
[7] 陈铁云, 邵文蛟. 加环肋圆筒形薄壳在静水外压力下的总体大挠度塑性稳定性及初挠度对其影响[J]. 中国造船, 1979(3):59-78
[8] YAMAKIN. Elastic stability of circular cylindrical shells[M].The Netherlands:Elsevier Science Publishers B. V, 1984.
[9] 王林, 谢祚水. 纵横加肋耐压圆柱壳结构的稳定性[J]. 华东船舶工业学院学报, 1998(5):21-24
WANG Lin, XIE Zuo-shui. The structural stability of longitudinal-transverse stiffened and pressed cylindrical shell[J]. Journal of East China shipbuilding Institute, 1998(5):21-24
[10] 彭懿. 单壳体潜艇壳体结构损伤后的屈曲分析[D]. 哈尔滨:哈尔滨工程大学, 2008.
PENG Yi. Buckling analysis of damaged mono-shell submarine structure[D]. Harbin:Harbin Engineering University, 2008.
[11] 聂武, 孙丽萍著. 船舶计算结构力学[M]. 哈尔滨:哈尔滨工程大学出版社, 1999:252-319.
[12] 高良田, 张杨, 孙巍. 计及材料非线性的HOV球形耐压壳结构设计[J]. 船舶工程, 2014(S1):16-19
GAO Liang-tian, ZHANG Yang, SUN Wei. Structure design for hov spherical pressure hull with consideration of material nonlinearity[J]. Ship Engineering, 2014(S1):16-19
[13] 张菊, 赵永东, 张炳喜, 等. 耐压壳非圆度偏差检测研究[J]. 船舶工程, 2005(4):16-18
[14] 王明禄, 张建, 唐文献, 等. 一阶模态缺陷条件下蛋形耐压壳屈曲特性研究[J]. 江苏科技大学学报(自然科学版), 2017(4):413-417, 426
WANG Ming-lu, ZHANG Jian, TANG Wen-xian, et al. Research on buckling behavior of the egg-shaped pressure hull under the first mode imperfection[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017(4):413-417, 426