本文提出一种适用于浅水域平台的新型定位装置,具体来说,是在平台上布置一定数量的可伸缩桩来插入海床以抵抗平台受到的外部载荷。本文主要基于有限元方法,通过Abaqus软件对该定位装置的可伸缩桩的侧向承载能力进行数值计算研究。分别用三维有限元法和p-y曲线法分析桩的位移响应,验证了p-y曲线法的准确性。比较3-4-5-6 m可伸缩桩与3 m和4 m桩径均匀桩的侧向承载力,结果显示3-4-5-6 m可伸缩桩承载力与4 m桩径均匀桩相近。通过模型试验获得平台的水平方向水动力载荷并分析可伸缩桩的动力响应。本文通过数值计算得出该新型定位装置的可伸缩桩侧向承载力表现较好,该定位装置值得进一步研究并考虑用于工程应用中。
A novel positioning facility suitable for platforms deployed in shallow water is proposed. Based on FEM, the lateral capacity of the telescopic in this novel positioning facility is investigated by ABAQUS. The accuracy of the p-y curve method is verified by comparing the displacement of the pile calculated by 3D FEA and p-y curve method. The lateral capacity of the uniform piles with diameter of 3m and 4m and the 3-4-5-6 m telescopic pile are compared. The results show that the lateral capacity of the 3-4-5-6 m telescopic pile is similar to the 4m uniform pile's. The telescopic pile model is loaded the hydrodynamic load of the platform obtained from the model test to investigate the pile's dynamic response. In this paper, the lateral capacity of the telescopic is proved well through numerical simulation. The novel positioning facility deserves further research for practical application.
2019,41(9): 26-31 收稿日期:2018-07-03
DOI:10.3404/j.issn.1672-7649.2019.09.005
分类号:TU473
基金项目:工信部高技术船舶科研项目,国家自然科学基金资助项目(51709170);国家重点研发计划(2016YFC0303405);上海市青年科技英才扬帆计划(17YF1409700)
作者简介:纪传鹏(1993-),男,硕士研究生,主要从事可伸缩桩定位装置有限元研究
参考文献:
[1] ISSC. Committee VI.2:very large floating structures[C]. Southampton, UK:Proc 16th International Ship and Offshore Structures Congress, 2006.
[2] MIGUEL L P, GREGORIOIGLESIAS L C. A review of very large floating structures (VLFS) forcoastal and offshore uses[J]. Ocean Engineering, 2015, 109(2015):677-690
[3] SUZUKI, H. Overview of megafloat:concept, design criteria, analysis, and design[J]. Marine Structures, 2005, 18(2):111-132
[4] SUZUKI H, et al. Very large floating structures[C]. International Offshore Mechanics and Arctic Engineering Conference, 2007, OMAE 2007-29758.
[5] WANG CM, TAY ZY. Very large floating structures:applications, research and development[J]. Procedia Engineering, 2011, 14(3):62-72
[6] WATANABE E, WANG CM, UTSUNOMIYA T, et al. Very large floating structures:applications, analysis and design[J]. Centre for Offshore Research and Engineering, National University of Singapore, 2004, Core Report No. 2004-02.
[7] MCCELLAND B, FOCHT J A. Soil modulus for laterally loaded piles[J]. Transactions ASCE, 1958, 123(1958):1049
[8] API. RP 2AWSD, 21st ed, recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S].
[9] DNV-OS-J101, Design of Offshore Wind Turbine Structures[S].
[10] DANNO, K. and KIMURA M. Evaluation of long-term displacements of pile foundation using coupled fem and centrifuge model test[J]. Soils & Foundations, 2009, 49(6):941-958
[11] SUN Y. Experimental and numerical studies on a laterally loaded monopole foundation of offshore wind turbine[D]. Hangzhou:Dissertation of Zhejiang University, 2016.
[12] MENG, Z.. Install effects and bearing capacity of drilled displacement piles with a screw-shaped shaft[D]. Hangzhou:Dissertation of Shanghai Jiao Tong University, 2017.
[13] MANNA B. BAIDYA, DK Nonlinear dynamic response of piles under horizontal excitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(12):1600-1609
[14] KHODAIR Y, ABDEL-MOHTI A. Numerical analysis of pile-soil interaction under axial and lateral loads[J]. International Journal of Concrete Structures & Materials, 2014, 8(3):239-249
[15] HAIDERALI A, MADABHUSHI G. Evaluation of the p-y method in the design of monopiles for offshore wind turbines[C]. Offshore Technology Conference, 2013.
[16] LESNY K,WIEMANN J. Finite-element-modelling of large diameter monopiles for offshore wind energy converters[C]. Proceedings, 2013, 1-6.