采用谐波法和傅里叶变换相结合的方法分析了正交周期加肋板结构在谐振力激励下的振动响应特性。通过薄板与加强肋的边界连续条件,建立了水流体负载下的加肋板结构的振动位移方程。根据结构的周期特性、泊松公式及傅里叶变换等数学方法推导出频域内结构辐射声压及加强肋作用力关于周期加肋板结构振动位移的方程表达式,并将其位移表达为谐波量的迭加函数形式,最终通过数值截断方法求解振动位移的谐波分量值。本文分析了加强肋对结构振动响应的影响,并为加肋板结构的声振特性研究提供了一种半解析方法。
Vibration analysis of an orthogonally periodical rib-stiffened panel excited by an harmonic pressure is investigated by applying the harmonic method and Fourier transforms. Through the continuity boundary conditions between the thin panel and the ribs, the function of vibration displacement of the stiffened panel under water fluid is established. Based on the periodical property of the structure, Poisson's function and Fourier transforms, the structural radiation pressure and forces of the ribs are respectively derived. The radiation pressure and forces are subsequently written as functions of the vibration displacement of the periodical rib-stiffened panel in the frequency domain. The vibration displacement is then expressed as a function about a sum of harmonic components, which are finally solved by a numerical truncation method. In this work, the effect of the ribs on the structural vibration response is analyzed and a semi-analytical method is also proposed for the vibro-acoustic investigation of rib-stiffened panels.
2019,41(9): 42-47 收稿日期:2018-12-28
DOI:10.3404/j.issn.1672-7649.2019.09.008
分类号:U661.44
基金项目:国家自然科学基金资助项目(51405276)
作者简介:周海安(1981-),男,博士,讲师,主要从事结构振动及声学特性研究
参考文献:
[1] LAMB G L. Input impedance of a beam coupled to a plate[J]. Journal of the Acoustical Society of America, 1961, 33(5):628-633
[2] MAIDANIK G. Response of ribbed panels to reverberant acoustic fields[J]. Journal of the Acoustical Society of America, 1962, 34(6):809-826
[3] HECKL M. Wave propagation on beam-plate systems[J]. Journal of the Acoustical Society of America, 1961, 33(5):640-651
[4] MERCER C M, SEAVEY C. Prediction of natural frequencies and normal modes of skin-stringer panel rows[J]. Journal of Sound and Vibration, 1967, 6(1):149-162
[5] ZHONG W X, WILLIAMS F W. On the direct solution of wave propagation for repetitive structures[J]. Journal of Sound and Vibration, 1995, 181(3):485-501
[6] MEAD D J, MALLIK A K. An approximate theory for the sound radiation from a periodic line-supported plate[J]. Journal of Sound and Vibration, 1978, 61(3):315-326
[7] MEAD D J. Plates with regular stiffening in acoustic media:vibration and radiation[J]. Journal of the Acoustical Society of America, 1990, 88(1):315-326
[8] MACE B R. Periodically stiffened fluid-loaded plates, I:response to convected harmonic pressure and free wave propagation[J]. Journal of Sound and Vibration, 1980, 73(4):473-486
[9] MACE B R. Sound radiation from fluid loaded orthogonally stiffened plates[J]. Journal of Sound and Vibration, 1981, 79(3):439-452
[10] MEAD D J. The forced vibration of one-dimensional multi-coupled periodic structures:An application to finite element analysis[J]. Journal of Sound and Vibration, 2009, 319(1-2):282-304
[11] MAXIT L. Wavenumber space and physical space responses of a periodically ribbed plate to a point drive:A discrete approach[J]. Applied Acoustics, 2009, 70(4):563-578
[12] ZHOU H A, WANG X M, MEI Y L. A semi-analytical method for the vibration of and sound radiation from a two-dimensional beam-stiffened plate[J]. Acta Mechanica Solida Sinica, 2011, 24(3):231-240
[13] LEE J -H, KIM J. Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method[J]. Journal of Sound and Vibration, 2002, 251(2):349-366
[14] LEGAULT J, MEJDI A, ATALLA N. Vibro-acoustic response of orthogonally stiffened panels:The effects of finite dimensions[J]. Journal of Sound and Vibration, 2011, 330(24):5928-5948
[15] 金叶青, 姚熊亮, 庞福振, 等. 均匀流中剪切变形加筋层合板声与振动特性研究[J]. 物理学报, 2013, 62(13):134306
[16] DOZIO L, RICCIARDI M. Free vibration analysis of ribbed plates by a combined analytical-numerical method[J]. Journal of Sound and Vibration, 2009, 319(1-2):681-697
[17] 李凯, 何书韬, 邱永康, 等. 附加多个集中质量加筋板的自由振动分析[J]. 中国舰船研究, 2015, 10(5):66-70
[18] 周俊平. 水下加筋板振动声辐射的代理模型研究[J]. 舰船科学技术, 2016, 38(12A):19-21