舰船导航领域通常采用多传感器组合的方式保证导航精度,但对于水下舰船而言,由于其传感器种类少、精度低,导航精度水平有待提升。本文结合舰船配置特点,提出一种多惯性导航系统信息融合方法,通过设计Kalman滤波器实现多套惯导设备的信息融合,模拟仿真实验和半实物仿真试验结果表明,相较于单套惯导系统而言,所提方法可以将定位精度提升30%,为水下舰船的长航时高精度导航提供了保障。
In the field of shipping navigation, multi-sensors combination are usually adopted to ensure the navigation accuracy. But for underwater ships, the navigation accuracy needs to be improved due to its few types of sensors and low accuracy. In this paper, a multiple information fusion method of inertial navigation system is presented combining with the characteristics of ship configuration and the information fusion of multiple inertial navigation devices is realized through a Kalman filter. The simulation experiment and semi-physical simulation test show that the positioning accuracy of the proposed method is 30% higher than the single inertial navigation system, which provides a great guarantee in high precision navigation for underwater ships.
2019,41(9): 125-127,141 收稿日期:2019-07-11
DOI:10.3404/j.issn.1672-7649.2019.09.024
分类号:TP965.6
作者简介:芈小龙(1977-),男,工程师,主要从事信息系统研究
参考文献:
[1] 张闯, 郭晨, 张大恒. 船舶组合导航自适应迭代粒子滤波方法及应用[J]. 系统工程与电子技术, 2019, 41(4):884-889
[2] 梅玲玉, 马磊, 张涛. 基于INS/GPS/磁力计的全组合导航[J]. 传感器与微系统, 2019, 38(3):39-41
[3] XIONG Y, ZHANG Y, GUO X, et al. Seamless global positioning system/inertial navigation system navigation method based on square-root cubature Kalman filter and random forest regression[J]. Review of Scientific Instruments, 2019, 90(1):015101
[4] ZHANG C, CHEN G, ZHANG D. Ship navigation via GPS/IMU/LOG integration using adaptive fission particle filter[J]. Ocean Engineering, 2018, 156:435-445
[5] 任民魁, 蒋国萍, 姜宇琛. 基于修正Rodrigues参数的鲁棒滤波算法在组合导航中的应用[J]. 电光与控制, 2019, 26(03):43-47
[6] QIN H, YUE S, CONG L, et al. A state-constrained tracking approach for Kalman filter-based ultra-tightly coupled GPS/INS integration[J]. GPS Solutions, 2019, 23(2)
[7] 赵俊波, 葛锡云, 冯雪磊, 等. 水下SINS/DVL组合导航技术综述[J]. 水下无人系统学报, 2018, 26(1)
[8] LIU P, BO W, DENG Z, et al. INS/DVL/PS tightly coupled underwater navigation method with limited DVL measurements[J]. IEEE Sensors Journal, 2018, 18(7):2994-3002
[9] EMAMI M, TABAN M R. A novel intelligent adaptive Kalman filter for estimating the submarine's velocity:With experimental evaluation[J]. Ocean Engineering, 2018:S0029801818304530
[10] GROVES P D. Principles of GNSS, inertial, and multisensor integrated navigation systems[J]. Industrial Robot, 2013, 67(3):191-192
[11] GROVES P D. Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edition[Book review] [J]. IEEE Aerospace & Electronic Systems Magazine, 2015, 30(2):26-27
[12] NGUYEN T, MANN G K I, VARDY A, et al. Developing a cubature multi-state constraint kalman filter for visual-inertial navigation system[C]//Canadian Conference on Computer and Robot Vision. 2017.
[13] 冷传营, 刘锡敬. 自适应算法在单轴激光惯导初始对准中的应用[J]. 舰船电子工程, 2012, 32(10):44-46
[14] 查月. 舰艇惯性导航技术应用与展望[J]. 现代导航, 2017, 8(2):147-151