以型号MAN 9L32/40的船用柴油机额定工况下排放的烟气为研究对象,根据双膜理论建立SO2的传质模型,通过用户自定义函数将SO2的吸收程序导入Fluent软件中,对脱硫塔进口烟道处不同位置是否开启高效雾化喷嘴的脱硫情况进行模拟,并通过实验对模拟结果进行对比验证。结果表明,烟道处开启高效雾化喷嘴可有效提高烟气进入塔后分布的均匀性。在入口SO2质量分数为0.002 4,3层喷淋层正常运行条件下,分别开启入口烟道左侧面和左+右的组合侧面的高效雾化喷嘴,脱硫效率分别由95%提高至96.78%,98.4%。该脱硫效率的模拟数值与试验数值相比,误差较小。
The smoke emitted by the marine diesel engine of the model MAN 9L32/40 under rated conditions is the research object. The mass transfer model of SO2 was established according to the two-film theory. The absorption program of SO2 was introduced into Fluent through the user-defined function in order to simulate the desulfurization condition when the high-efficiency atomizing nozzle is opened or not at different positions in the inlet flue of the desulfurization tower, and the simulation results are compared and verified by experiments. The results show that the high-efficiency atomizing nozzle at the flue can effectively improve the uniformity of the distribution of flue gas after entering the tower; At the inlet SO2 mass fraction is 0.0024, under the normal operating conditions of the 3-layer spray layer, the high-efficiency atomizing nozzles on the left side and the combined side of the left side and the right side of the inlet flue are respectively opened, the desulfurization efficiency is increased from 95% to 96.78%, 98.4%.
2019,41(9): 142-146 收稿日期:2018-08-14
DOI:10.3404/j.issn.1672-7649.2019.09.028
分类号:U664.121
作者简介:周密(1995-),男,硕士研究生,主要研究方向为船舶轮机设备及系统的性能与优化设计
参考文献:
[1] 杨丁, 叶兴联, 郭俊, 等. 湿法烟气脱硫流场优化数值模拟与模型试验研究[J]. 电力科技与环保, 2018, 34(2):9-13
[2] 黄小萍, 钱付平, 王来勇, 等. 转炉一次除尘新OG系统高效喷淋塔喷嘴雾化特性的模拟[J]. 过程工程学报, 2018, 18(3):461-468
[3] 刘定平, 方磊, 肖尚. 脱硫塔烟道喷雾脱硫技术模拟及试验研究[J]. 动力工程学报, 2015, 35(10):830-834
[4] SOREN K, MICHAEL L M, DAM-JOHANSEN K. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant[J]. Industrial and Engineering Chemistry Research, 1998(7):2792-2806
[5] SELENE M A, FABIANE B F, SANTOS A, et al. Limestone dissolution in flue gas desulfurization-experimental and numerical study[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(9)
[6] KALLINIKOS L E, FARSARI E I, SPARTINOS D N, et al. Simulation of the operation of an industrial wet flue gas desulfurization system[J]. Fuel Processing Technology, 2010, 91(12)
[7] GUTIERREZ F J O. A simple realistic modeling of full-scale wet limestone FGD units[J]. Chemical engineering journal, 2010(2):426-439
[8] WARYCH J, SZYMANOWSKI M. Optimum values of process parameters of the wet limestone flue gas desulfurization system[J]. Chemical Engineering and Technology:Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 2002(4):427-432
[9] BROGREN C, KARLSSON H T. Modeling the absorption of SO2 in a spray scrubber using the penetration theory[J]. Chemical Engineering Science, 1997, 52(18)
[10] 李荫堂, 于涛, 李军. 烟气脱硫喷淋塔内液滴停留时间[J]. 环境污染治理技术与设备, 2004(10):89-91
[11] 李仁刚, 管一明, 周启宏, 等. 烟气脱硫喷淋塔流体力学特性研究[J]. 电力环境保护, 2001(4):4-8
[12] 张晓东, 杜云贵, 郑永刚, 等. 湿法脱硫的一维数值计算模型[J]. 中国电机工程学报, 2008(14):15-19
[13] 贺志超, 毕文剑, 罗坤, 等. 导流板对脱硫塔除雾器前烟气流场的优化模拟[J]. 能源与环境, 2018(3):8-10+13
[14] 贾勇, 陈宜华, 丁希楼, 等. 喷淋塔氨法脱硫正四价硫氧化数学模型研究[J]. 中国环境科学, 2017, 37(4):1291-1297
[15] 张璐, 钟文琪, 李益国, 等. 面向DCS优化控制的氨法脱硫过程模拟[J]. 东南大学学报(自然科学版), 2018, 48(3):435-442