针对水深和浪向等参数对有航速纵向连接多联浮体运动产生影响的问题,基于势流理论分析了有航速的纵向连接多联浮体的水动力特性,并利用水动力计算软件AQWA分别对不同水深、不同浪向和不同航速下多联浮体结构进行了频域计算,得到了多联浮体RAOs随波浪圆频率的变化曲线。计算结果表明,水深越浅,垂荡RAOs会减小,但纵摇与首摇RAOs会增大,对于所研究的纵向连接多联浮体而言,8 m以上水深可以看作无限水深进行分析和计算;不同浪向对纵向连接多联浮体各自由度影响不同,若多联浮体产生较大的运动响应时,应及时改变航向;在较高航速下纵向连接多联浮体各自由度RAOs会产生较大的响应,在低中频段航行时应适当降低航速航行,在高频段航行时可以适当提高航行速度。
The problem of affecting the movement of speed of longitudinal connected multiple floating bodies with parameters such as water depth and wave direction, the hydrodynamic characteristics of longitudinal connected multiple floating bodies with speed are analyzed based on potential flow theory, and the frequency domain calculation of the multiple floating bodies with different depth, different wave direction and different speed is carried out by using AQWA software. The curves of RAOs of the multiple floating bodies with wave circular frequencies are obtained. The results show that when the floating bodies move within 5 m in shallow water depth, the existence of shallow water effect will lead to larger RAOs of pitch and yaw of the floating bodies. The depth of longitudinal connected multiple floating bodies above 8 m in this paper can be regarded as infinite water depth for analysis and calculation. If the motion responses of the multiple floating bodies become larger, the course of the floating body should be changed in time. In higher speed navigation, the multiple floating bodies will have greater response in lower and middle frequencies, and the speed of navigation should be reduced appropriately, but the speed could be relatively large in high frequencies.
2019,41(11): 37-41 收稿日期:2019-07-25
DOI:10.3404/j.issn.1672-7649.2019.11.007
分类号:U661.3
基金项目:工信部高技术船舶科研项目(工信部联装【2016】22号文);国家自然科学基金资助项目(51379250)
作者简介:魏枭(1995-),男,硕士研究生,研究方向为浮式结构水动力分析
参考文献:
[1] MICHEL G, DANIEL JR. Impulse-based substructuring in a floating frame to simulate high frequency dynamics in flexible multibody dynamics[J]. Multibody System Dynamics, 2018, 42(1):47-77
[2] MARCEL E, JURNAN S. On the use of absolute interface coordinates in the floating frame of reference formulation for flexible multibody dynamics[J]. Multibody System Dynamics, 2017(6):1-16
[3] LEE HW, ROH MI, HAM SH, et al. Coupled analysis method of a mooring system and a floating crane based on flexible multibody dynamics considering contact with the seabed[J]. Ocean Engineering, 2018, 163:555-569
[4] ZHAO H, XU DL, ZHANG HC, et al. A flexible connector design for multi-modular floating structures[J]. Offshore Technology, 2018(1):17-22
[5] YANG SH, WANG YQ, HE HZ, et al. Dynamic properties and energy conversion efficiency of a floating multi-body wave energy converter[J]. China Ocean Engineering, 2018, 32(3):347-357
[6] 韦斯俊, 王义, 高明, 等. 极浅水多体波浪能发电装置锚泊系统设计[J]. 船舶工程, 2017.
[7] 张周康, 洪亮. 多浮体系统在波浪作用下运动响应的数值仿真研究[J]. 机械与电子, 2018(1):10-14
[8] 苗玉基, 方虎生, 陈徐均. 带航速三体渡驳水动力特性频域分析[J]. 解放军理工大学学报(自然科学版), 2015, 16(6):548-553
[9] 陈振纬. 基于AQWA计算规则波中新型海工船的运动响应[A]. 中国造船工程学会船舶力学学术委员会、《船舶力学》编委会、中国船舶科学研究中心. 纪念《船舶力学》创刊二十周年学术会议论文集[C]//中国造船工程学会船舶力学学术委员会、《船舶力学》编委会、中国船舶科学研究中心:中国船舶科学研究中心《船舶力学》编辑部, 2017:7.
[10] 李鸿, 张斐斐, 李莉, 等. 系泊多浮体耦合系统水动力特性数值分析[J]. 舰船科学技术, 2019, 41(5):8-12
[11] ANSYS AWQA, 2011. Release, vol. 14 ANSYS-Inc. Pennsylvania, USA.
[12] 刘应中, 缪国平. 船舶在波浪上的运动理论[M]. 上海:上海交通大学出版社, 1987.