大深度载人潜水器往往采用开孔耐压球壳作为其主要的承压结构,球壳开孔加强结构的优化设计,对减轻球壳重量,提高球壳承载能力具有重要意义。本文介绍拓扑优化的方法以及耐压球壳优化设计的基本流程,以4 500 m耐压球壳为研究对象,基于 Hyperworks和Workbench软件,建立了耐压球壳的有限元模型,进行静力分析,并根据结果对球壳的开孔加强结构进行拓扑优化和尺寸优化,得到最优的加强形式。优化结果表明,优化后的耐压球壳的刚度和承载能力得到显著提高。
Deep manned submersibles often use open-hole pressure spherical shells as their main pressure-bearing structures. It is of great significance to optimize the reinforced structure of the opening of the spherical shell to reduce the weight of the spherical shell and improve the bearing capacity of the spherical shell.This paper introduces the method of topology optimization and the basic optimization process of the pressure spherical shell. Then the paper takes the 4500 m pressure spherical shell as the research object.Based on the Ansys Workbench and Hyperworks software, a finite element model of the open-hole spherical shell was built, then the static analysis was conducted.And according to the analysis results, the topology optimization and size optimization were performed. Finally, the optimal reinforcement structure of spherical shell was got.The optimization results show that the stiffness and bearing capacity of the spherical shell has been significantly improved.
2019,41(11): 54-58 收稿日期:2018-07-20
DOI:10.3404/j.issn.1672-7649.2019.11.011
分类号:U663.6
作者简介:高原(1993-),男,硕士研究生,专业方向为水下工程结构优化
参考文献:
[1] 徐秉汉, 朱邦俊, 欧阳吕伟, 等.现代潜艇结构强度的理论与试验[M].北京:国防工业出版社, 2007.
[2] 操安喜, 刘蔚. 载人潜水器耐压球壳的多目标优化设计[J]. 中国造船, 2007, 48(3):107-113
[3] 刘峰, 韩端峰. 有开孔加强结构耐压球壳稳健性优化[J]. 哈尔滨工程大学学报, 2016, 37(12):1613-1618
[4] 中国船级社.潜水系统与潜水器入级与建造规范[S].北京:人民交通出版社, 2013.
[5] SIGMUND O. Design of material structures using topology optimization[D]. Denmark:Department of Solid Mechanics, Technical University of Denmar, 1994.
[6] BENDSOE M. P., SIGMUND O. Material interpolations in topology optimization[J]. Archive of Applied Mechanics, 1999, 69:635-654
[7] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Struct Multidisc Optim.
[8] SVANBERG K. The method of moving asymptotes:a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24:359-373
[9] SVANBERG K. The MMA for modeling and solving optimization problems[J]. WCSMO-3(held in Buffalo, NY), 1999
[10] BRUYNEEL M, DUYSINX P, FLEURY C. A family of MMA approximations for structural optimization[J]. Structural and Multidiscipline Optimization, 2002, 24:263-276
[11] 杜建镔.结构优化及其在振动和声学设计中的应用[M].北京:清华大学出版社, 2015