为了提高海水电解酸化系统的酸化效率和运行稳定性,高效地提取出海水中储存的高浓度CO2。基于流体分析软件Fluent,以三舱室海水酸化池为研究对象,建立其流场模型,对酸化池内的水流流场进行数值模拟,分析了不同的流量条件和不同的结构参数对海水流场分布的影响,探索性地研究了如何避免酸化池内不溶物沉积的产生。结果表明,只有当改变酸化池的水流流道结构,使流道与入口尺寸接近时,才能提高酸化池的畅通性,消除流场中的低速滞留区。在搭建的海水电解酸化系统流程上进行了实验,实验结果验证了数值模拟的有效性和正确性,为海水电解酸化提取CO2酸化池的结构设计提供了依据。
In order to improve the acidification efficiency and operation stability of seawater electrolytic acidification system, and extract the high concentration CO2 stored in seawater efficiently. The three-compartment seawater acidification tank was investigated with the fluid analysis software Fluent, the flow field model was established to simulate the flow field in the acidizing tank, the effects of different flow conditions and different structural parameters on the distribution of the flow field were analyzed, how to avoid the formation of insoluble matter deposition in the acidizing tank was explored. The results show that only when the flow channel structure of the acidification tank is changed, and the size of the channel is close to that of the inlet, can the flow capacity of the acidification tank be improved and the low velocity retention area in the flow field be eliminated. Finally, the process of seawater electrolysis acidification system was built for experiment and the experimental results verify the validity and correctness of the numerical simulation, which provides a basis for the structure design of seawater electrolysis acidification extraction CO2 acidification tank.
2019,41(11): 86-93 收稿日期:2019-10-08
DOI:10.3404/j.issn.1672-7649.2019.11.017
分类号:TQ021.1;TQ0646.5
作者简介:刘鹏(1989-),男,硕士研究生,工程师,研究方向为结构设计与力学分析
参考文献:
[1] 白毓黎. 海水电解制备H2和CO2的过程模拟和技术评价研究[D]. 北京:北京化工大学, 2017.
[2] 乔然, 王彰贵, 等. 太平洋中低纬海水中的二氧化碳分布特征及其与海洋环境条件的关系[J]. 海洋学报, 2005, 27(6):30-37
[3] 张扬健, SPE电解池和再生燃料电池膜电极研究[D]. 北京:清华大学, 2007.
[4] 郑益锋. 固体氧化物燃料电池电解水制氢与电池堆集成研究[J]. 2013
[5] JENSEN S H, LARSEN P H. Hydrogen and synthetic fuel production from renewable energy sources[J]. International Journal of Hydrogen Energy, 2007, 32(15):3253-3257
[6] WILLAUER H D, HARDY D R, LEWIS M K, et al. Extraction of CO2 from Seawater and Aqueous Bicarbonate Systems by Ion-Exchange Resin Processes[J]. Energy & Fuels, 2012, 51(34):11254-11260
[7] 王福军, 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
[8] 杨爽, 李治勤. 矩形迷宫灌水器流量对水流流场与压力场的影响[J]. 太原理工大学学报, 2014(7):496-499
[9] 仵峰, 董晓爽, 吴玉博, 等. 渐缩-突扩流道水利特性研究[J]. 华北水利水电大学学报, 2017(2):61-67
[10] 李维仪; 叶建; 张楠. 前/后台阶影响湍流边界层发展的对比研究. 第九届全国流体力学学术会议论文摘要集[C]. 2016
[11] 孟桂祥, 张鸣远, 赵万华, 等. 滴灌滴头内流场的数值模拟及流道优化设计[J]. 西安交通大学学报, 2004, 38(9):920-940