采用SIMPLE算法求解不可压缩RANS方程,对KCS船体阻力计算精度进行研究。采用VOF方法捕捉自由液面,采用切割体网格技术划分整个流域。以自由模为例,首先分析边界层划分方式、湍流系数的确定对阻力的影响,为阻力的精确预报提供基础。其次,在合适的网格方式上,提出采用序列二次规划(NLPQL)法建立基于湍流系数的优化系统,以寻找到最适合船体阻力计算的湍流系数。然后,在最合适的网格及计算方法下计算不同航速下KCS船受到的总阻力、船体表面及周围流场分布,讨论约束模和自由模在阻力预报、流场捕捉上的差异,并分别将阻力计算结果与模型试验进行对比,从而验证本文算法的可靠性。本文研究内容能够为船体阻力的精确预报提供一定参考。
In this paper, the accuracy of resistance prediction was studied by using the RANS equations based on the SIMPLE algorithm with KCS. The free surface was simulated with volume of fluid (VOF) method. The whole computational domain was divided with trimmed mesh. Taking the MDOF model as an example, firstly, the influence of boundary layer and turbulence coefficients were analyzed, which provided the basis for accurate prediction of hull resistance. In the process of numerical simulation, the high-quality mesh and the high-precision numerical method are the key to CFD simulation. The paper established the optimization system of turbulence coefficients based on non-linear programming by quadratic lagrangian (NLPQL) algorithm to find the optimal solution parameters. Then, the total resistance, the pressure on wet surface of hull and the flow field under different Fr were calculated in the most suitable grids and turbulence coefficients. The differences between captive model and MDOF model in resistance prediction and flow field were discussed. Then the numerical results were compared with the experimental data. This study can give a reference for the future research in resistance prediction for the ship hull.
2020,42(1): 17-22 收稿日期:2019-06-24
DOI:10.3404/j.issn.1672-7649.2020.01.004
分类号:U661
基金项目:江苏省高等学校自然科学研究项目面上项目(19KJB580006)
作者简介:王英第(1987-),女,硕士研究生,讲师,主要从事船舶水动力性能分析
参考文献:
[1] CAMPANA E F, PERI D. Shape optimization in ship hydrodynamics using computational fluid dynamics[J]. Comput. Methods Appl. Mech. Engrg, 2006, 196:634-651
[2] PERI D, ROSSETTI M, CAMPANA E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Rearch, 2003, 41(1):1-12
[3] TAHARA Y, STERN F, HIMENO Y. Comuputational fluid dynamics-based optimization of a surface combatant[J]. Journal of Ship Rearch, 2004, 28(4):273-287
[4] DUMMETT R. The use of airboats in ice and water rescue emergencies-equipment that can minimize personnel risk and substantially reduce the time required for a life-saving rescue[J]. Fire Engineering, 2004, 157(3):113-126
[5] YEK P N Y. Static stability study of a shallow vee hull airboat for sarawak riverine application[D]. University Malaysia Sarawak, UNIMAS, 2014.
[6] PHAN Q T, NGO K H, PHAM M V. Numerical simulation of floating airboat:estimation of hydrodynamic forces[J]. International Journal of Mechanical Engineering and Applications, 2015, 13(3):41-46
[7] 倪崇本. 基于CFD的船舶阻力性能综合研究[D]. 上海:上海交通大学, 2011.
[8] 张艳, 阙晓辉. 基于CFD的船舶船体总阻力预报方法[J]. 舰船科学技术, 2015, 37(3):139-142
[9] 孔金平, 吴波涛, 孔令志. 基于CFD的船舶双螺旋桨水动力性能分析[J]. 舰船科学技术, 2019, 41(3):37-41
[10] HIRT, C W & NICHOLS, B D. Volume of fluid method for the dynamics of free boundaries[J]. Comp. Phys, 1981, 39:20-225
[11] 徐晓宏, 赵万忠, 王春燕, 等. 基于NLPQL算法的电动轮汽车差速助力转向参数优化[J]. 中南大学学报(自然科学版), 2012, 43(9):3431-3436
[12] 郭春雨, 王恋舟, 赵庆新, 等. 一种计及姿态变化的船舶阻力预报方法[J]. 船舶工程, 2015, 37(01):31-34