深度控制是潜航器运动控制重要组成部分。在近水面航行时,潜航器受波浪力的扰动,二阶波浪力将使潜航器难以保持深度。同时,低航速状态下,水平舵受航速影响舵效大幅降低,本文基于自抗扰控制技术(ADRC)设计了潜航器深度控制器,通过扩张状态观测器(ESO)观测扰动并及时进行补偿。仿真与水池实验表明,相较于传统PID方法,该控制器使得潜航器具有更好的深度控制效果。
The performance of depth control for an underwater flight vehicle (UFV) is important. Due to the considerable wave-suction force, depth control of an underwater flight vehicle moving near surface and disturbed by wave is extremely hard. Meanwhile, the lift force generated by the bow and stern planes will decrease significantly due to low efficiency under low speeds. A depth controller of UFV based on active disturbance rejection controller (ADRC) is designed in this paper. The extended state observer observes and compensates the disturbance of wave on line. Both the results of simulations and tank tests of depth control of an underwater flight vehicle verify the advantages of the active disturbance rejection controller over conventional PID controller.
2020,42(1): 28-31 收稿日期:2018-11-16
DOI:10.3404/j.issn.1672-7649.2020.01.006
分类号:TP273
作者简介:作者简介内容缺失
参考文献:
[1] ZHANG J, LIAN L, TONG G. Robust control and simulation of near-surface submarine[J]. Ocean Engineering, 2006, 24(4):32-31
[2] LICÉAGA-CASTRO E, UGALDE-LOO C E, NAVARRO-LÓPEZ E M. Efficient multivariable submarine depth-control system design[J]. Ocean Engineering, 2008, 35(17):1747-1758
[3] GAO Fu-dong, PAN Cun-yun, HAN Yan-yan, et al. Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions[J]. Journal of Central South University, 2012, 19(7):1859-1868
[4] FONT R, GARCÍA-PELÁEZ J. On a submarine hovering system based on blowing and venting of ballast tanks[J]. Ocean Engineering, 2013, 72(7):441-447
[5] 林龙信, 沈林成, 张代兵. 仿生波动鳍的试验研究[J]. 哈尔滨工程大学学报, 2008, 29(5):489-492
[6] JIN H, PAN L, WANG L. Adaptive variable structure control with neuron for low speed stabilizing of submarine near surface[J]. Control & Decision, 2010, 25(4):562-566+571
[7] LICEAGA-CASTRO E, VAN d M G M. Submarine H ∞, depth control under wave disturbances[J]. Control Systems Technology IEEE Transactions on, 1995, 3(3):338-346
[8] HAN J. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906
[9] LIN X, HU D, DUAN Z. The Research on Fuzzy-PID Control of the Submarine Course[C]//International Symposium on Computational Intelligence & Design. IEEE, 2013:281-284.
[10] ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al. Sliding-Mode Tracking Control of Surface Vessels[J]. IEEE Transactions on Industrial Electronics, 2008, 55(11):4004-4012
[11] XUE W, BAI W, YANG S, et al. ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9):5847-5857
[12] CUI R, CHEN L, YANG C, et al. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6785-6795
[13] DUAN W, WANG L, CHEN J. Calculation of vertical second-order drift loads on a submarine floating near the free water surface based on Taylor expansion boundary element method[J]. Journal of Harbin Engineering University, 2017, 38(1):8-12
[14] T I. FROSSEN, Guidance and control of ocean vehicles. 1994.
[15] L. ZHANG, Y B. LI. Fluid Mechanics, 220-221, 2006
[16] L. WU, J. HAN TD Filter and its applications[J]. Computing Technology and Automation, 2003, 22(s1):61-63