为探究中高频扰动下舰船隔振系统多维隔振的能量波动特性,考虑隔振器的分布参数特性和基础柔性,基于该动力耦合系统中子系统结构的导纳矩阵,推导系统能流传递函数,建立了复杂激励下分散中间质量隔振系统的分布参数解析模型。联系当前舰船隔振系统的应用,设置等中间质量的浮筏隔振系统作为参照组,研究了中间结构的波动效应、隔振器驻波及中间质量与机器质量比对系统振动能量传递的影响机理。分析表明,分散中间质量避免了中间结构的波动效应,降低了子系统间发生动力耦合的可能性;分散中间质量隔振系统可以明显降低目标频段隔振器驻波发生的几率,改善了高频隔振效果;在兼顾舰船设计空间和重量的要求下,适当增大分散中间质量可以拓宽该系统的有效隔振区间。
In order to explore the energy fluctuation characteristics of multi-dimensional vibration isolation of ship vibration isolation system under medium and high frequency disturbance, considering the distributed parameter characteristics of the isolator and the flexibility of the foundation, based on the mobility matrix of the subsystem structure in this coupled system, the energy flow transfer function of the system was derived, a distributed parameter analytical model of dispersed intermediate mass vibration isolation system with complex input excitation was established. Taking into account the current application of ship vibration isolation systems, a floating raft isolation system with equal intermediate mass was selected as the reference model, the fluctuation of the intermediate structure, standing wave of the vibration isolator, the intermediate mass and the machine mass ratio on the vibration energy transfer were studied. Simulation analysis showed that the dispersed intermediate mass could mitigate the occurrence of standing wave of vibration isolator in the target frequency band and improve the vibration isolation result of high frequency, the dispersed intermediate mass also avoided the fluctuation effect of the intermediate structure and reduced the possibility of dynamic coupling between subsystems. Under the requirement of both ship design space and weight, appropriately increasing the dispersed intermediate mass can broaden the effective vibration isolation interval of the system.
2020,42(1): 56-61 收稿日期:2018-10-26
DOI:10.3404/j.issn.1672-7649.2020.01.012
分类号:TB53;TB123
基金项目:山东省自然科学基金资助项目 (31360005201504)
作者简介:牛宁(1994-),男,硕士研究生,主要从事振动与噪声控制研究
参考文献:
[1] 宋孔杰, 张蔚波, 牛军川. 功率流理论在柔性振动控制技术中的应用与发展[J]. 机械工程学报, 2003, 39(9):23-28
[2] 尚国清, 李巍. 关于舰船浮筏系统的特征演化[J]. 舰船科学技术, 1999(1):21-23
[3] SNOWDON J. C. Vibration isolation:use and characterization[J]. The Journal of the Acoustical Society of America, 1979, 66(5):1245-1274
[4] 魏强, 朱英富, 张国良. 舰船基座上双层隔振系统能量流数值分析[J]. 舰船科学技术, 2004, 26(6):5-9, 20
[5] 何琳, 徐伟. 舰船隔振装置技术及其进展[J]. 声学学报, 2013, 38(2):128-136
[6] 周刘彬, 杨铁军, 张攀, 等. 基于弹性舱段结构的浮筏主动隔振系统实验研究[J]. 振动与冲击, 2013, 32(17):161-165
[7] 张树桢, 陈前. 浮筏隔振系统的非共振响应分析[J]. 振动工程学报, 2014, 27(3):326-332
[8] 王真, 赵志高, 刘芳. 全柔性浮筏隔振系统建模与隔振性能分析[J]. 振动.测试与诊断, 2017, 37(1):70-75
[9] 李建彰. 高速型船舶振动响应计算分析[J]. 舰船科学技术, 2018, 40(1):23-26
[10] UNGAR E E, DIETRICH C W. High-frequency vibration isolation[J]. Journal of Sound and Vibration, 1966, 4(2):224-241
[11] WINBERG M, HANSEN C, CLAESSON I, et al. Active control of engine vibrations in a Collins class submarine[M]. 2003.
[12] 杜冬, 禇德英, 孙中涛, 等. 多个小中间质量隔振最优设计及其性能研究[J]. 振动与冲击, 2008, 27(7):36-41
[13] 王孚懋, 宋孔杰. 小中间质量对复杂系统隔振效果的影响及最优设计[J]. 振动工程学报, 1991(3):10-17
[14] SUN L, LEUNG A Y T, LEE Y Y, et al. Vibrational power-flow analysis of a MIMO system using the transmission matrix approach[J]. Mechanical systems and signal processing, 2007, 21(1):365-388
[15] Advanced applications in acoustics, noise and vibration[M]. CRC Press, 2004.