本文针对粘弹性自由阻尼结构,基于模态应变能法推导出同时考虑粘弹性阻尼损耗因子和弹性模量频变效应的模态损耗因子修正公式,并选取某压筋板进行了计算和验证。在此基础上,以船舶阻尼加筋板为研究对象,开展随机响应试验研究,并对试验模型的模态损耗因子和随机响应进行了数值计算和对比分析。结果表明,采用该修正公式确定粘弹性自由阻尼结构的模态损耗因子,进而计算随机响应的方法是可行的。该方法对阻尼减振的相关分析研究具有参考价值。
For viscoelastic unconstrained damped structures, the modal loss factor correction formula considering both the viscoelastic damping loss factor and the elastic modulus frequency change effect is derived based on the modal strain energy method, and a ribbed plate is selected for calculation and verification. Random response experiment was carried out for a ship damping stiffened plate. The modal loss factor and random response of the model were numerically calculated and compared. The results show that it is feasible to determine the modal loss factor of unconstrained damped structures with the modified formula and calculate the random response. The method has reference value for the correlation analysis of vibration damping.
2020,42(1): 62-67 收稿日期:2018-10-16
DOI:10.3404/j.issn.1672-7649.2020.01.013
分类号:U661.33
作者简介:陈威(1993-),男,硕士研究生,主要研究船体振动、阻尼减振
参考文献:
[1] 周云. 粘弹性阻尼减震结构设计[M]. 武汉:武汉理工大学, 2006:116-128.
[2] LU Y P, EVERSTINE G C. More on finite element modeling of damped composite systems[J]. Journal of Sound & Vibration, 1980, 69(2):199-205
[3] HU Y C, HUANG S C. The frequency response and damping effect of three-layer thin shell with viscoelastic core[J]. Computers & Structures, 2000, 76(5):577-591
[4] IU V P, CHEUNG Y K, LAU S L. Non-linear vibration analysis of multilayer beams by incremental finite elements, Part II:Damping and forced vibrations[J]. Journal of Sound & Vibration, 1985, 100(3):373-382
[5] BAGLEY R L, TORVIK P J. On the fractional calculus model of viscoelastic behavior[J]. Journal of Rheology (1978-present), 1986, 30(1):133-155
[6] MCTAVISH D J, HUGHES P C. Modeling of linear viscoelastic space structures[J]. Asme Transactions Journal of Vibration Acoustics, 1993, 115(1):103-110
[7] JOHNSON C D, KIENHOLZ D A. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. Aiaa Journal, 2012, 20(20):1284-1290
[8] CAO X, MLEJNEK H P. Computational prediction and redesign for viscoelastically damped structures[J]. Computer Methods in Applied Mechanics & Engineering, 1995, 125(1-4):1-16
[9] 邓年春, 邹振祝, 杜华军, 等. 约束阻尼板的有限元动力分析[J]. 振动工程学报, 2003, 16(4):489-492 DENG Nian-chun, ZOU Zhen-zhu, DU Hua-jun, et al. A finite element dynamic analysis of constrained plates[J]. Journal of Vibration Engineering, 2003, 16(4):489-492
[10] 孙社营. 阻尼压筋板的动态力学性能研究[J]. 噪声与振动控制, 2000(02):19-23 SUN She-ying. Dynamic investigation of a damped stiffened plate[J]. Noise and Vibration Control, 2000(02):19-23
[11] RAO D K. Frequency and loss factors of sandwich beams under various boundary conditions[J]. ARCHIVE Journal of Mechanical Engineering Science 1959-1982(vols 1-23), 1978, 20(5):271-282
[12] 祝驰誉, 温华兵. 丁基橡胶阻尼材料对基座减振的实验研究[J]. 造船技术, 2015(2):50-53 ZHU Chi-yu, WEN Hua-bin. An experimental study on butyl rubber damping material applied to base structure[J]. Marine Technology, 2015(2):50-53