为了能够较便捷的对舰船甲板气流场进行评价,本文在数值仿真的基础上采用基于改进优劣解距离法(TOPSIS)对甲板流场进行排序。此外,评估了不同风向和风速条件下的流场,并与数值结果进行比较。结果表明,运用TOPSIS方法对SFS2舰船在不同工况下的流场质量进行优劣排序,可以得到与数值仿真相同的规律;在相同的相对风速下,关键点的侧风风速越大,流场质量越差;TOPSIS法的评估结果与研究关键点位置的选取有关。
In order to facilitate the assessment of the ship deck flow field, the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is applied to sort the deck flow field based on the numerical simulation. Then the flow field under different wind direction and wind speed conditions are evaluated, and it is compared with the numerical simulation analysis results. Research indicates that the TOPSIS method is used to classify the flow field quality of SFS2 ships under different working conditions,and the obtained rules are consistent with the numerical simulation results. At the same relative wind speed, when the wind speed of the key point is faster, and the quality of the flow field is worse. The evaluation results of the TOPSIS method are related to the location of the research key points.
2020,42(1): 68-74 收稿日期:2018-10-18
DOI:10.3404/j.issn.1672-7649.2020.01.014
分类号:U662
作者简介:李想(1994-),男,硕士研究生,研究方向为舰船甲板气流场仿真
参考文献:
[1] ROPER D M, OWEN I, et al. Integrating CFD and piloted simulation to quantify ship-helicopter operating limits[J]. The Aeronautical Journal, 2006:419-428
[2] 朱英富. 水面舰船设计新技术[M]. 哈尔滨:哈尔滨工程大学出版社, 2004. ZHU Ying-Fu. New technology for surface ship design[M]. Harbin:Harbin Engineering University, 2004.
[3] 吕红. 舰船周围气流场数值模拟方法及分布规律的研究[D]. 哈尔滨:哈尔滨工程大学., 2008. LU Hong. The study on the numeric simulation method and the distributed law of airflow field around naval ship[D]. Harbin:Harbin Engineering University, 2008.
[4] 赵维义, 傅百先, 陈新民. 舰船空气尾流场特性研究[J]. 飞行力学, 1996, 14(1):54-59 ZHAO Wei-Yi, FU Bai-Xian, CHEN Xin-Min. Characteristic of ship air wake field[J]. Flight Dynamics, 1996, 14(1):54-59
[5] 赵永振. 大型船体定常与非定常气流场数值模拟[D]. 哈尔滨:哈尔滨工程大学, 2012. ZHAO Yong-zhen. Numerical simulation of steady and unsteady air flow field around large ship[D]. Harbin:Harbin Engineering University, 2012.
[6] 郜冶, 谢辉松. 滑跃起飞过程舰体周围流场的数值模拟[J]. 空气动力学学报, 2008, 26(4):513-518 GAO Ye, XIE Hui-Song. The numerical simulation of flow around the warship during ramp ski-jump take-off[J]. Acta Aerodynamica Sinica, 2008, 26(4):513-518
[7] 张修远, 常欣, 李想, 等. 基于改进ELECTRE法的舰船气流场方案评估方法[J]. 北京航空航天大学学报, 2016, 42(11):2507-2515 ZHANG Xiu-Yuan, CHANG Xin, LI Xiang, et. Evaluation method of airflow field plan in warship based on improved ELECTRE method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11):2507-2515
[8] 高华, 李东芳, 于国杰, 等. 海上直升机甲板受环境条件影响安全评估的研究综述[J]. 中国海洋平台, 2012, 27(1):5 GAO Hua, LI Dong-Fang, YU Guo-Jie, e t. Review of risk assessment for the environmental effects on the offshore helideck[J]. China Offshore Platform, 2012, 27(1):5
[9] CAA(UK). Helicopter Turbulence Criteria for Operations to Offshore Platforms[S], CAA Paper 2004, 03.
[10] 陆超, 姜治芳, 王涛. 不同工况条件对舰船舰面空气流场的影响[J]. 舰船科学技术, 2009, 31(9):38-42 LU Chao, JIANG Zhi-Fang, WANG Tao. Influences of different airflow situations for ship airwake[J]. Ship Science and Technology, 2009, 31(9):38-42
[11] 郜冶, 刘长猛, 贺征. 风向变化产生的航母甲板涡结构特征研究[J]. 空气动力学学报, 2013, 31(3):300-315 GAO Ye, LIU Chang-Meng, HE Zheng. Research on CVN deck vortices structure characteristics caused by wind direction changes[J]. Acta Aerodynamica Sinica, 2013, 31(3):300-315
[12] 李想, 黄胜, 王超, 等. 基于相对熵排序的舰船甲板气流场评价方法[J]. 中国舰船研究, 2016, 11(4):1-6 LI Xiang, HUANG Sheng, WANG Chao, et. Evaluation of ship airflow based on the relative entropy method[J]. Chinese Journal of Ship Research, 2016, 11(4):1-6
[13] 贺少华, 刘东岳. 舰船气流场品质评估指标研究[J]. 舰船科学技术, 2016, 38(2):149-154 HE Shao-Hua, LIU Dong-Yue. Quality index of ship airwakes[J]. Ship Science and Technology, 2016, 38(2):149-154
[14] 孙晓颖, 许伟, 武岳. 第十三届全国结构风工程学术会议论文集:钝体绕流中的计算域设置研究[C]//北京:中国土木工程学会桥梁与结构工程分会风工程委员会, 2007. SUN Xiao-Ying, XU Wei, WU Yue. Proceedings of the 13th national conference on structural wind engineering:Study on the calculation domain setting in the flow around a blunt body[C]//BeiJing:Wind engineering committee, bridge and structural engineering branch, Chinese civil engineering society, 2007.
[15] 孙传伟, 高正, 孙文胜. 舰面流场对直升机着舰时悬停操纵的影响[J]. 南京航空航天大学学报, 1999, 31(6):614-619 SUN Chuan-Wei, GAO Zheng, SUN Wen-Sheng. Analysis of unmanned helicopter hovering in ship flow field over flight deck[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(6):614-619
[16] ROPER D. M., OWEN I., PADFIELD G. D. Integrating CFD and piloted simulation to quantify ship-helicopter operating limits[J]. The Aeronautical Journal, 2006, 6:419-430
[17] 耿雪. 直升机旋翼与舰船甲板复合流场研究[D]. 大连:大连海事大学, 2014. GENG Xue. The study of composite flow field of the helicopter rotor and ship deck[D]. Dalian:Dalian Maritime University, 2014.
[18] REDDY K. R., TOFFOLETTO R., JONESK. R. W. Numerical simulation of ship airwake[J]. Computers&Fluids, 29(2000):451-465.