自主/遥控水下机器人(ARV)是一种综合自主水下机器人和遥控水下机器人特点的新型水下机器人,融合ARV自主控制和操作人员遥控的共享控制是ARV控制的关键问题。针对ARV在环境探索任务中和目标观察任务中的共享控制,采用基于行为的控制思想,提出一种基于行为的ARV共享控制方法,包括实现环境探索的遥控行为、自主避障行为、以及实现目标观察的人机协同路径跟踪控制行为,通过设计的基于优先级的行为组织和融合方法,实现了ARV基于设计的行为以“人主机辅”模式执行环境探索继而以“机主人辅”模式执行目标观察过程的有效共享控制。基于构建的水下机器人共享控制仿真环境对设计的共享控制方法进行仿真实验,验证了提出的共享控制方法的有效性。
The Autonomous and Remotely Operated Underwater Vehicle (ARV) is a new type of underwater vehicle, which integrates the features of autonomous underwater vehicle and remotely operated underwater vehicle. Due to its capability of hybrid control by both human operators and onboard computers, how to combine the two control commands is a key issue for ARV control. Based on the behavior-based approach, this paper proposes a behavior-based method for the shared control of the ARV for human-vehicle collaborative environmental exploration and object observation missions. In this method, remote control behavior, autonomous object-avoidance behavior, and human-vehicle collaborative path-flowing control behavior are designed. And to coordinate the designed behaviors to implement the two missions, a control architecture with priority-based behavior fusion mechanism is developed. To validate the effectiveness of the proposed shared control method, simulations are conducted via a developed computer simulation environment. And the simulation result demonstrates that the proposed method effectively implements the human-centered and vehicle-centered shared control in simulated human-vehicle collaborative environmental exploration and object observation missions.
2020,42(1): 95-100 收稿日期:2018-12-28
DOI:10.3404/j.issn.1672-7649.2020.01.019
分类号:TP242
基金项目:国家重点研发计划资助项目(2016YFC0300801);国家自然科学基金资助项目(41376110,61673370);中国科学院青年创新促进会资助项目(2016185);中国科学院创新基金资助项目(CXJJ-16M225)
作者简介:王兴华(1993-),男,硕士研究生,研究方向为水下机器人共享控制
参考文献:
[1] 李一平, 李硕, 张艾群. 自主/遥控水下机器人研究现状[J]. 工程研究-跨学科视野中的工程, 2016, 8(2):217-222
[2] XIANG X, NIU Z, LAPIERRE L, et al. Hybrid underwater robotic vehicles:the state-of-the-art and future trends[J]. Hkie Transactions, 2015, 22(2):103-116
[3] REED S, WOOD J, HAWORTH C. The detection and disposal of IED devices within harbor regions using AUVs, smart ROVs and data processing/fusion technology[C]//Waterside Security Conference. 2011.
[4] WANG Y, SHI Z, WANG C, et al. Human-robot mutual trust in (semi) autonomous underwater robots[J]. Studies in Computational Intelligence, 2014:115-137
[5] SPENCER D A, YUE W. SLQR suboptimal human-robot collaborative guidance and navigation for autonomous underwater vehicles[C]. American Control Conference. 2015.
[6] HENRIKSEN E H, SCHJOLBERG I, GJERSVIK T B, et al. Adaptable joystick control system for underwater remotely operated vehicles[J]. IFAC-Papersonline, 2016, 49(23):167-172
[7] GARCÍA J C, PÉREZ J, MENEZES P, et al. A control architecture for hybrid underwater intervention systems[C]//IEEE International Conference on Systems. 2017.
[8] 田宇, 张艾群, 李伟. 基于混合模糊P+ID控制的欠驱动AUV路径跟踪控制及仿真[J]. 系统仿真学报, 2012, 24(5):78-82+7 TIAN Y, ZHANG A, LI W. Path-following control and simulation of underactuated autonomous underwater vehicles based on fuzzy P plus ID control[J]. Journal of System Simulation, 2012, 24(5):78-82+7
[9] CARRERAS M, BATLLE J, RIDAO P. Hybrid coordination of reinforcement learning-based behaviors for AUV control[C]//Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.
[10] WEISSTEIN, ERIC W. Superellipse[DB/OL]. MathWorld-A Wolfram Web Resource, 2016.
[11] PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. Massachusetts Institute of Technology-Woods Hole Oceanographic Institution, 2001.